A review of the genus *Curtisia* (Curtisiaceae)

E. YU. YEMBATUROVA* +, B-E. VAN WYK* • and P. M. TILNEY* •

Keywords: anatomy, Cornaceae, Curtisiaceae, *Curtisia dentata* (Burn.f.) C.A.Sm., revision, southern Africa

ABSTRACT

A review of the monotypic southern African endemic genus *Curtisia* Aiton is presented. Detailed studies of the fruit and seed structure provided new evidence in support of a close relationship between the family Curtisiaceae and Cornaceae. Comparisons with several other members of the Cornales revealed carpellary similarities to certain species of *Cornus* s.l., sometimes treated as segregate genera *Dendrobenhamia* Hutch. and *Benthamidia* Spach. We also provide information on the history of the assegai tree, *Curtisia dentata* (Burn.f.) C.A.Sm. and its uses, as well as a formal taxonomic revision, including nomenclature, typification, detailed description and geographical distribution.

INTRODUCTION

Curtisia Aiton is a monotypic genus traditionally placed in the family Cornaceae. It is of considerable interest because of the many uses of its timber and bark—but no recent reviews of the morphology, taxonomy or anatomy are available. Recent cladistic and molecular systematic studies have revealed new evidence of relationships at family level (Murrell 1993; Xiang et al. 1993; Noshiro & Baas 1998; Xiang & Solis 1998; Xiang 1999), including support for a separate family, Curtisiaceae, or a close relationship with the family Grubbiaceae, even resulting in a proposal for extending it to also include *Grubbia* P.I.Bergius (Xiang et al. 2002). As no taxonomic revision of *Curtisia* has ever been published since its original description in 1789, we present here a formal taxonomic treatment of this interesting southern African endemic genus. A further aim was to investigate the structure of the fruit and seeds to allow comparisons with putative relatives.

MATERIALS AND METHODS

Young branches with leaves and fruits at different stages of maturation were fixed in FAA (for a minimum of 24 hrs). The voucher specimen is Van Wyk & Yembaturova 4218 (JRAU), collected at Diepwalle Forest (33233CC), Knysna District, Western Cape, South Africa. Some *Curtisia* fruits and seeds were also obtained from the carpellary collections of LE and STU (collection of Felix Hohmann). Suitable portions were treated according to the method of Feder & O’Brien (1968) for embedding in glycol methacrylate (GMA). Specimens from the following herbaria were examined: JRAU, NGB, PRE and STU. Herbarium acronyms are given after Holmgren et al. (1990).

A Porter-Blüm ultramicrotome was used to cut transverse sections of the fruits from 3 to 5 μm thick, and the periodic acid-Schiff/toluidine blue staining method (Feder & O’Brien 1968) was applied. Suitable sections were photographed. Fruits obtained from carpellary collections were rehydrated and then softened by means of prolonged heating in Strassburger mixture (water, glycerol and 96 % ethyl alcohol in equal proportions), in accordance with traditional anatomical procedures (Prozina 1960) and then sectioned either by hand or sledge microtome. Test-reactions to identify lignification (phloroglucine and concentrated HCl), gutin and fatty substances (Sudan III, IV), starch (I-KI) and protein (biuret test with 5 % copper sulphate and 50 % KOH) were applied to the sections. The terminology used is illustrated in the figures.

RESULTS AND DISCUSSION

Vegetative morphology

The plants are tall shrubs or medium-sized trees 8 to 13 m high (Figure 1A) although specimens of up to 20 m are not uncommon (Coates Palgrave 2002). Young twigs are densely tomentose; the hairs are rusty brown to dark brown but become sparser and greyish with age. The bark is initially brownish and smooth; in older trees it becomes darker, tinted with grey and rough with square fissures (Figure 1D, E). The leaves are opposite, simple, petiolate and lack stipules. They are elliptic to ovate-lanceolate, 130–150 × 50–70 mm, leathery, bright to dark green and glossy above (but sometimes sparsely pubescent, mostly along the midrib, with simple, straight, thin hairs) and markedly reddish tomentose below (tending to become somewhat glabrescent with age). The lamina is entire, dorsiventral, with its apex broadly tapering to rounded and abruptly pointed; the base is mostly broadly tapering, less often cuneate; the margins are usually slightly revolute and are markedly dentate to serrate or almost sinuate. The venation is pinnate and markedly raised on the abaxial surface (Figure 1C). Stomata are anomocytic. Petioles are up to 30 mm long and rusty tomentose when young but may become sparsely hairy with age. Bud scales are brown or rust-brown and very densely pubescent.

Reproductive morphology and anatomy

Floral morphology and vasculature was thoroughly investigated by Eyde (1967, 1988). The small flowers of *Curtisia* are arranged in terminal, rather large (up to 120
mm long) panicles (Figure 1B). Sometimes second-order inflorescences are formed of flowers clustered together, giving a somewhat capitulate appearance. The peduncles and pedicels are covered with dense yellowish hairs. The opposite primary branches of the panicles are subtended by pronounced, markedly pubescent bracts (Cannon 1978). As is common for Cornaceae, floral parts are in fours (visible in Figure 1B). The petals are twice as long as the calyx tube, oblong in shape; the stamens are equal to petals in length. A characteristic centrally located vascular bundle in the four-loculed inferior ovary was described by Eyde (1967) who suggested the removal of Curtisia from Cornaceae on the basis of this feature.

Curtisia fruits (Figure 1C) are usually referred to as drupes (or ‘drupaceous’) (e.g. Dyer 1975; Leistner 2000) but this term is imprecise. True drupes are found only in the subfamily Prunoideae of the family Rosaceae where the fruit develops from a monocarpous gynoecium (Shibakina 1984; Leivina 1987). In members of Cornales, as well as many other taxa, the fruits are syncarpous (with two or more fused carpels) and often pseudomonomorous (with only one of two or more locules and seeds reaching full development). Therefore, the term ‘pyrenarium’, proposed by Z. Artyushenko (Artyushenko & Fyodorov 1986) for such fruits as those of Curtisia, will be used. The term ‘pyrene’ applies to fruits such as those of Ilex L. and some Araliaceae, where each seed is surrounded by a lignified endocarp (each called a pyrene). However, when the endocarp is fused into a single bony structure around the seeds, the term ‘fused pyrenes’ or ‘pyrenarium’ is preferable. The pyrenaria of Curtisia are small (10–15 mm in diameter), globose, subglobose or rarely ovoid, snow-white and sometimes with ± persistent calyx teeth (Figure 1C). The outer pericarp tissues are fleshy (Figure 2A) and comprise both hypanthial exocarp and mesocarp, the latter developed from both hypanthial and carpellar tissues. The heavily lignified endocarp constitutes a four-loculed stone, usually with a fully developed seed in each. Only the very central area, where the vascular bundle is located, is not lignified (Figure 2F, arrow). The seeds are exostelal (see description of the seed coat later on), with copious endosperm and a well-developed, small, centrally located embryo.

The structure of the fruit wall and the seed was studied in detail. The exocarp is formed by a single layer of radially elongated cells with heavily thickened and cutinized walls (Figure 2B). The mesocarp is primarily parenchymatous. A hypoderm is clearly visible (Figure 2B, K) as the outermost zone of the mesocarp, with two to three layers of minute cells which are flattened in the tangential direction and sometimes have an almost

FIGURE 1.—Morphology of Curtisia dentata: A, growth form (cultivated tree at Kirstenbosch Botanical Garden); B, inflorescence with flowers (note densely tomentose vestiture); C, fruits (note white colour) and leaf surface; D, E, bark. Scale bars: A, 1 m; B, 6 mm; C, 10 mm; D, E, 40 mm. Photographs by B-E. van Wyk.
tabular arrangement. Most of the mesocarp consists of loosely arranged, large, thin-walled parenchymatous cells of varying shape. These cells form up to 16 layers. Small sclereids (Figure 2C) can be found scattered throughout the entire mesocarp (solitary or in clusters of two to four). Also scattered in the mesocarp are the derivatives of vascular bundles (Figure 2A, D, arrow); they are fairly large but usually only slightly lignified. The inner zone of the mesocarp is composed of two or three layers of small, thin-walled cells which are elongated tangentially.
There is a very conspicuous intermediate zone between the mesocarp and endocarp, formed by five to seven (or up to nine) layers of small, tangentially elongated cells filled with brightly coloured tanniniferous substances (dark zone in Figure 2A, D). These cells possess slightly thickened walls that are somewhat lignified.

The typically woody endocarp comprises 17 to 20 layers of fairly small sclereids (Figure 2E), mostly orientated parallel to the longitudinal fruit axis, except for the innermost layer(s), which can be variously orientated to form a ‘lining’ layer for each locule. Some of the sclereids appear to contain tannins.

The seed coat of *Curtisia* was previously incompletely described as ‘thin and filmy, made of compressed and partially obliterated cells’ (Trifonova 2000). However, our study revealed several interesting structural details. Firstly, the exotesta is composed of fairly large, tangentially elongated cells, which appear oval or almost crescent-shaped in cross section (due to concave outer tangential walls) (Figure 2G). These cells are filled with tanniniferous substances and have walls consisting of cellulose. In certain parts of the seed coat, large sclerified vascular bundle derivatives are found (Figure 2H), surrounded by a few layers of very small, compressed parenchymatous cells. This type of seed coat can be classified as ‘exotestal’ because of the pronounced, thick-walled outer cells.

The meso- and endotestal components of the seed coat largely consist of compressed and deformed cells of irregular shape, sometimes only with their walls persisting. The part of the endotesta which lies against the endosperm is homogenous and the cell walls are indistinguishable and cutinized.

The seed has a massive copious endosperm, with protein as the main ergastic substance; the minute embryo is located centrally within the endosperm (Figure 2I).

Phylogenetic relationships

The relationships of *Curtisia* have not yet been clarified. Its position within the Cornaceae had been stable for a long time (Harms 1898; Wangerin 1910; Philipson 1967; Cronquist 1981; Thorne 1992) but its isolated position within the family was noted—hence the subfamily Curtisioideae of Harms (1898). Evidence had gradually accumulated (Adams 1949; Eyde 1967; Yeramyan 1971) for separating it as a monotypic family Curtisiaceae Takht. (validated by Takhtajan 1987) but still within Cornales. This followed an earlier trend of splitting the broad family concept of Harms (1898) by elevating most of the 15 genera to family status, e.g. *Davidia* Baill. to Davidiaceae (Li 1954), *Mastixia* Blume to Mastixiaceae (Calestani 1905—cited by Takhtajan 1987) and *Toricepsia* DC. to Toricelliaeae (Hu 1934—cited by Takhtajan 1987).

Detailed molecular systematic studies by Xiang and co-authors (Xiang et al. 1993, 1998, 2002; Xiang & Soltis 1998; Xiang 1999; Fan & Xiang 2003) showed that *Curtisia* is sister to another southern African endemic genus *Grubbia*, and that the combined clade is again sister to the rest of the Cornales. A suggestion by Xiang et al. (2002) to expand the Grubbiaeae to include *Curtisia* (citing similarities such as the geographical distribution, woody habit, leathery simple leaves with revolute margins, opposite phyllotaxy, lack of stipules, hermaphroditic flowers, inferior ovary and copious endosperm) was not followed in later treatments (e.g. Angiosperm Phylogeny Group II 2003; Heywood et al. 2007) where the two monotypic families were retained. According to Xiang et al. (2002), ‘no apparent morphological synapomorphies can be found for the two genera at present’ and there are indeed important differences between them. The distribution of *Curtisia* extends along the southern and eastern coast of South Africa northwards as far as Mozambique (coastal zone—Da Silva et al. 2004) and eastern Zimbabwe (Baker 1911–1912; Eyles 1917), whereas *Grubbia* is restricted to fynbos. The large, leathery leaves of *Curtisia* are coarsely dentate or sometimes sinuate and only slightly revolute, whereas the small, almost ericoid leaves of *Grubbia* species have entire margins which are distinctly revolute. There are also important morphological differences in reproductive structures—inflorescences, flowers and especially the fruits. Xiang et al. (2002) ascribed these differences to ancient divergence. It is possible that a more detailed investigation of the anatomy of *Grubbia* fruits and seeds could shed some light on the *Curtisia*-*Grubbia* relationship, but hitherto this appears to be based only on molecular evidence.

Carpological research of Cornales and allies by Yembaturou (2001, 2002), the comparative results of which are summarized in Table 1, showed a number of basic structural traits that appeared to be of diagnostic value. *Curtisia* resembles *Cornus* L. s.l., *Nyssa* L., *Alangium* Lam. and *Corokia* A.Cunn. most closely, and *Davidia* and *Mastixia* to a lesser extent. All of these taxa have epigynous flowers (however, this is still questionable for *Davidia*), typical pyrenaria, thick, succulent exomesocarps and well-developed woody endocarps. *Curtisia*, however, differs from all other taxa in having stones with all four locules similar in size and shape, each containing a fully developed seed. The other taxa usually have only a single fully developed locule and seed. There are also differences in some finer structural details. *Alangium* and *Mastixia*, for example, have conspicuous secretory structures in their fleshy mesocarp tissues which are absent in *Curtisia*. Species of *Nyssa* have either no sclereids or far more mesocarp sclereids than *Curtisia*. Furthermore, *Curtisia* is the only genus with a centrally located vascular bundle in the ovary; other putative Cornaceae relatives are reported to have transseptal bundles (Eyde 1967).

As is well known, the Cornaceae have a rich fossil record which includes wood, leaves and especially fruits (Miki 1956; Eyde & Bargroon 1963; Eyde et al. 1969; Mai & Welther 1978; Arbuzova 1988; Eyde 1988; Eyde & Xiang 1990). Most of the fossil structures have been identified as belonging to the genera *Davidia*, *Mastixia*, *Diplopanax* Hand.-Mazz., *Nyssa*, *Alangium* and *Cornus*. Recently, a fossil species of the Eocene London Clay flora, originally referred to as *Leucopogon quadrilocularis* Reid & Chandler or *Cornus quadrilocularis* (Reid & Chandler) Chandler was shown to belong to *Curtisia* (Manchester et al. 2007) on the basis of the endocarp structure. The fossil endocarps of *Cornus quadrilocula-
ris are composed of slightly elongated sclereids and possess four seed-bearing locules and a vascular bundle in the centre, as in extant Curtisia.

The greatest degree of resemblance to Curtisia in pericarp structure (Figure 2J, L, with a portion of Curtisia pericarp given in Figure 2K for comparison) is shown by two representatives of the genus Cornus s.l., currently segregated into the genera Dendrobethamnia (Asian dogwoods with compound fruits) and Benthamidia (American dogwoods with fruits clustered together without fusing). These three taxa all have radially elongated exocarp cells with heavily cutinized walls, solitary or clustered sclereids scattered throughout the parenchymatous mesocarp and a homogeneous woody endocarp. It is noteworthy that scattered sclereids were previously treated as an adaptation to synzoochorous dispersal in the relatively large, compound fruits of Dendrobetahamnia, believed to be dispersed by monkeys (Eyde 1985). Curtisia fruits, despite their bitter taste, are also dispersed by animals such as birds (loeries, rameron pigeons), wild pigs, monkeys and less often baboons (Watt & Breyer-Brandwijk 1962). It seems likely that Curtisia fruits may be oil-yielding, as many white-fruited dogwoods from Cornus s.l. [e.g. Swida alba (L.) Opiz, S. sericea (L.) Holub and other shrubby species] have fruits rich in oil (Sozonova 1992). These fruits look white because of the oil droplets that reflect light. Thus, fruit anatomy has hereby provided evidence of a possible Curticia-Cornus affinity and therefore supports Tahktajan’s (1987) treatment of Curtisia as a monotypic family Curtisieaeae within the order Cornales, close to the core family Cornaceae. The latter is currently treated as consisting only of Cornus s.l. but it has often been divided into several segregates (Tahktajan 1987, 1997).

TAXONOMY

Curtisia Aiton, Hortus kewensis 1: 162 (Aug.–Oct. 1789) nom. cons., Thunb.: 100 (1792); Thunb.: 28 (1794); Thunb.: 141 (1823); Wild.: 687 (1797); Roem. & Schult.: 294 (1818); Spreng.: 442 (1825); DC.: 12 (1825); Harv.: 143 (1838); Endl.: 799 (1839); Lindl.: 783 (1847); Harv.: 579 (1862); Hook.f.: 949 (1867); Baill.: 3: 334 (1863), 163 (1879a), 253 (1879b); Harms: 262 (1898); Wangerin: 29 (1910). Type: *C. faginea Aiton [now C. dentata (Burn.f.) C.A.Sm.].*

Note: the generic name Curtisia Aiton was conserved against the earlier homonym Curtisia Schreber, Apr. 1789 (family Rutaceae) and is listed in the International Code of Botanical Nomenclature (McNeill et al. 2006). Both these generic names were given in honour of William Curtis, the founder and for a long time the proprietor of the famous Curtis’s Botanical Magazine, published since 1786 and known as Botanical Magazine (Burtt Davy 1932; Marais 1985).

Trees, medium-sized to large, up to 20 m high, or tall shrubs. Bark brown and smooth when young, dark brown and square-fissured with age. Young branches with reddish or rust-brown hairs. Leaves simple, sessile or shortly pedicellate, scentless, hermaphroditic, epiphyllous, tomentose. Calyx tube 4-lobed, adnate to ovary. Petals 4, cream-coloured or white with a tint of purple, valvate. **Androecium** dimitous; stamens 4, alternating with petals; filaments subulate; anthers short. **Gynoecium** syncarpous; ovary 4-locular (occasionally 3-locular); ovules pendulous, one per locule. **Fruit** globose, snow-white, drupaceous (pyrenarium), stone

TABLE 1.—Comparative carpological traits in genera of Cornaceae sensu Harms (1898) [From Yembaturova (2001), translated from Russian]

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Ovary</th>
<th>Mature pericarp consistency</th>
<th>No. well-developed seeds per fruit</th>
<th>Endocarp type and no. cell layers</th>
<th>No. locules or pyrenes</th>
<th>No. and type of sterile locules</th>
<th>No. mesocarp cell layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cornus L.</td>
<td>Inferior</td>
<td>Fleshy</td>
<td>1 or 2</td>
<td>Woody (> 20)</td>
<td>1 or 2 (3 or 4) locules</td>
<td>1(2), compressed</td>
<td>> 20</td>
</tr>
<tr>
<td>2. Nyssa L.</td>
<td>Inferior</td>
<td>Fleshy</td>
<td>1 or 2</td>
<td>Woody (> 20)</td>
<td>1 or 2 locules</td>
<td>1, compressed</td>
<td>> 20</td>
</tr>
<tr>
<td>3. Alangium Lam.</td>
<td>Inferior</td>
<td>Fleshy</td>
<td>1 or 2</td>
<td>Woody (> 20)</td>
<td>1 or 2 locules</td>
<td>1, compressed</td>
<td>> 20</td>
</tr>
<tr>
<td>4. Mastixia Blume</td>
<td>Inferior</td>
<td>Fleshy</td>
<td>1</td>
<td>Woody (16–20) (transition to cartilaginous)</td>
<td>1 (incomplete septa)</td>
<td>None</td>
<td>> 20</td>
</tr>
<tr>
<td>5. Corokia A.Cunn.</td>
<td>Inferior</td>
<td>Fleshy</td>
<td>1 or 2</td>
<td>Woody (> 20)</td>
<td>1 or 2 locules</td>
<td>None</td>
<td>> 20</td>
</tr>
<tr>
<td>6. Davidia Baill.</td>
<td>Inferior</td>
<td>Fleshy</td>
<td>1</td>
<td>Very woody (> 20)</td>
<td>7–9 locules</td>
<td>6–8 compressed</td>
<td>> 20</td>
</tr>
<tr>
<td>7. Curtisia Ait.</td>
<td>Inferior</td>
<td>Fleshy</td>
<td>4</td>
<td>Woody (> 20)</td>
<td>4 locules</td>
<td>None</td>
<td>> 20</td>
</tr>
<tr>
<td>8. Camptotheca Decne</td>
<td>Inferior</td>
<td>Dry at maturity</td>
<td>1</td>
<td>Weakly lignified, reduced (7–8)</td>
<td>1</td>
<td>None</td>
<td>> 20</td>
</tr>
<tr>
<td>9. Griselinia Forst.f.</td>
<td>Inferior</td>
<td>Fleshy</td>
<td>1</td>
<td>Weakly lignified or non-lignified (3–7)</td>
<td>1</td>
<td>None</td>
<td>17–20</td>
</tr>
<tr>
<td>10. Aucuba Thunb.</td>
<td>Inferior</td>
<td>Fleshy</td>
<td>1</td>
<td>Non-lignified (3–5)</td>
<td>1</td>
<td>None</td>
<td>15–18</td>
</tr>
<tr>
<td>11. Torricella DC.</td>
<td>Inferior</td>
<td>Fleshy</td>
<td>1</td>
<td>Cartilaginous (12–14)</td>
<td>3 or 4 locules</td>
<td>2 or 3, keep their shape and size</td>
<td>6–9</td>
</tr>
<tr>
<td>12. Melanophylla Baker</td>
<td>Inferior</td>
<td>Dry at maturity</td>
<td>1</td>
<td>Woody</td>
<td>3 locules</td>
<td>2, keep their shape and size</td>
<td>few</td>
</tr>
<tr>
<td>14. Helwingia Wild.</td>
<td>Inferior</td>
<td>Fleshy</td>
<td>2–4</td>
<td>Cartilaginous (6–10)</td>
<td>2–4 pyrenes</td>
<td>None (rarely 1)</td>
<td>20</td>
</tr>
<tr>
<td>15. Garrya Dougl. ex</td>
<td>Superior</td>
<td>Dry at maturity</td>
<td>1 or 2</td>
<td>Non-lignified (2–7)</td>
<td>1</td>
<td>None</td>
<td>10–13</td>
</tr>
</tbody>
</table>
(3)4-locular, (3)4-seeded, with a central vascular bundle. Seeds exotestal. Endosperm copious. Embryo minute, centrally located. Flowering time: late October to March. Fruiting time: May to October. Chromosome number n = 13 (Goldblatt 1978). Conservation status: Low Risk. Figure 1.

The species of Curtisia

There is only one extant species in the genus (see generic description given above).

Curtisia dentata (Burn.f.) C.A.Sm., in Journal of South African Forestry Association 20: 50, t. 170 (1951); Cannon: 635 (1978). Type: South Africa, *Sideroxylon dentatum* J.Burn., Rariorum Africanarum plantarum 235, t. 82 (1738), iconotype (Figure 3).

Sideroxylon dentatum Burn.f.: 6 (1768).

Curtisia foginea Alston: 162 (1789); Willd.: 687 (1797); Roem. & Schult.: 294 (1818); Thunb.: 141 (1823); Spreng.: 442 (1825); DC.: 12 (1825); Pape: 17 (1854); Harv.: 570 (1862); Wangerin: 30 (1910); Baker f.: 76 (1911–1912); Eyles: 435 (1917); Burt Davy: 512 (1932); Steedman: 60 (1933). Type: South Africa, introduced by Francis Masson in 1775 (Banks Herbarium, sheet BM0000794113, BM!).

Illustrations: Burn.: t. 82 (1738); Lam.: t. 71 (1823); Sim: t. 77 (1907); Wangerin: 30 (1910); Burt Davy: 513 (1932); Cannon: t. 170 (1978). There is a beautiful unpublished painting of *Curtisia dentata* by Clemenz Heinrich Wehdeleman (1782–1835) in the repository of Natural History Museum (BM). This original watercolour forms part of the Wehdeleman collection entitled 'Sketches of plants growing about Pieterburg Bay on the coast of Africa'.

History and uses

The most well-known name for *Curtisia* is assegai, assagai-tree (Afrikaans: *assegaiboom* or assagai-wood (*assegaihout*). The records for this name date back to the earliest colonial days, recorded, according to Smith (1966), by Hermann in 1672 and Burman in 1692. These plant names apparently were the first cases of modern spelling of the name. Early writers used such versions as *hazegaieyn boomen hout*, *asseaigij*, *assegae* and *hassagay-hout*. As far as the origin of the name *assegai/assagay* is concerned, several versions exist. One of them is that the name is derived through Portuguese from the Latin word *hasta*, meaning a spear (Palmer & Pitman 1972). Another idea is that it refers to the Arabic word *Azzaghayah*, adopted by the Portuguese with various spelling modifications and taken over by early Dutch writers (Smith 1966), evolving to its present-day form with time but always referring to weapons (spears and bows) used by the native African people. The ethnobotanical importance of the tree is reflected in the large number of vernacular names recorded in southern Africa. In Table 2, all these are listed exactly as they were published.

The wood of *Curtisia* is iron-hard but elastic, strong and very durable—traditional javelins and spears, with 1.8-m long tapering shafts, were made from this timber. Thunberg, in his descriptions of his travels in the Cape of Good Hope between 1772 and 1775 (Forbes 1986), repeatedly mentioned *Curtisia* (as "assagay wood") and its practical use for "assagays" (javelins that Khoikhoi people carried with them on their journeys, with which they ‘defended themselves against their enemies and wild beasts, and were able to kill them, buffaloes and other animals’). Later on, many other uses were found. The fact that assagai wood shrinks less than most other woods, made it very useful for the early settlers. It was the preferred timber for the axles and poles for wagons as well as the spokes, naves and felloes of the wheels. The highly decorative qualities of *Curtisia* timber—resembling mahogany due to developing a reddish brown, cinnamon tint with age—were appreciated by craftsmen producing tool handles (hammer handles in particular), implements of husbandry, furniture and floor covering (Watt & Breyer-Brandwijk 1962; Smith 1966; Palmer & Pitman 1972; Van Wyk et al. 2000). The bark was used for tanning, yielding 2.98 to 14.05 % of tanin; up to 4 % of tanin was yielded by the leaves and twigs of the plant (Watt & Breyer-Brandwijk 1962; Van Wyk et al. 1997). *Curtisia* is also an attractive ornamental tree, especially for moist gardens.

Curtisia dentata is important in traditional medicine (Arnold et al. 2002). Zulu people use the bark to treat diarrhoea and stomach ailments. It serves as an aphrodisiac (a ‘love charm’ to make a man attractive) and as a ‘blood purifier’ or ‘strengthening’ (Cunningham 1988; Hutchings et al. 1996; Van Wyk et al. 1997; Ngwenya et al. 2003). Since the tannin-rich bark is used for medicinal purposes, the debarking and ringbarking of trees caused significant damage in some localities. The bark (Figure 1E) used to be sold by traditional Zulu herb gatherers for R30 per 50 kg bag but after becoming scarce due to overexploitation, it is only included in special bark mixtures, such as ‘Special Khubalo’ (Cunningham 1988). Rapid coppicing and the apparent capability of the bark to regrow, played a very important role in the survival of this forest tree. Despite a broad phytochemical survey of the Coriacea by Bate-Smith et al. (1975), the chemical rationale for the traditional uses is still poorly understood. It may be assumed, however, that the high tannin content contributes to the efficacy in treating diarrhoea and stomach ailments.

Geographic distribution

Curtisia dentata is restricted to southern Africa, primarily along the southern and the eastern coasts of South Africa and extends into Swaziland, Mozambique and eastern Zimbabwe (Figure 4). The genus is confined to montane forests (mainly found on southern and southwestern slopes), at altitudes from sea level to 2 300 m.

SPECIMENS EXAMINED

Bayliss 127, 6169 (PRE, 2 sheets); 466, 1328, 1490 (PRE). Bazer 809 (PRE).

Comins 933 (PRE). Compton 28675, 32241 (PRE), 29500 (NBG, PRE). Curson & Irvine 86 (PRE, 2 sheets).

Dahlestram 2661 (PRE). Davis 56 (PRE). De Winter 8266A(PRE).

Eastwood 2430 (PRE). Ecklon & Zeyher 558 (NBG, 2 sheets); 596 (NBG); z.n. (PRE). Edwards 1450, 3511 (PRE).
Fischer 1105 (PRE). Flanagan 143 (PRE). Forest Dept. s.n. sub STEU188857 (PRE).

Galpin 4229, 11612, 13676 (PRE). Gertner 4387, 4488, 4499 (PRE).

Jacobsen 1812, 4679 (PRE). Jones & Leach 2531 (PRE).

Kemp 1200 (PRE). Kerfoot 6122 (PRE, 2 sheets: STU). Kerfoot. Forrester & Gooyer 131 (PRE). Killick 866, 1900 (PRE); s.n. (PRE, photo); Kluge 1358 (PRE).

Legat 2442 (PRE). Liebenberg 7955A (PRE).

Obermeyer 899, 1179 (PRE); 2008 (NBG, PRE). Osborne 30 (PRE).

Thode A273 (PRE); A844 (NBG, PRE); A845 (PRE, 2 sheets). Thornycroft 1005 (PRE). Topper 97 (NBG). Torre & Pereira 12.738 (PRE).

Uys s.n. (PRE).

Figure 3.—Iconotype of Curtisia dentata [Burnmann: plate 82 (1738)].
TABLE 2.—Vernacular names for Curtisia dentata. All names given in exactly same form as originally published

<table>
<thead>
<tr>
<th>Vernacular name</th>
<th>Language group</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assegaiboom; assegaihout; (Assegai wood)</td>
<td>Afrikaans</td>
<td>Hutchings et al. 1996; Smith 1966; Von Breitenbach et al. 2001</td>
</tr>
<tr>
<td>Assegai-hout</td>
<td>Afrikaans</td>
<td>Burtt Davy 1932</td>
</tr>
<tr>
<td>Asgai</td>
<td>Afrikaans</td>
<td>Von Breitenbach et al. 2001</td>
</tr>
<tr>
<td>Asgai/hout</td>
<td>Afrikaans</td>
<td>Burtt Davy 1932; Watt & Breyer-Brandwijk 1962</td>
</tr>
<tr>
<td>Assegai-wood</td>
<td>English</td>
<td>Watt & Breyer-Brandwijk 1962</td>
</tr>
<tr>
<td>Assegai-tree</td>
<td>English</td>
<td>Coates Palgrave 2002</td>
</tr>
<tr>
<td>Cape assegai-wood</td>
<td>English</td>
<td>Steedman 1933; Watt & Breyer-Brandwijk 1962</td>
</tr>
<tr>
<td>Lance wood</td>
<td>English</td>
<td>Steedman 1933; Watt & Breyer-Brandwijk 1962</td>
</tr>
<tr>
<td>Muchekamani</td>
<td>Ndua</td>
<td>Watt & Breyer-Brandwijk 1962</td>
</tr>
<tr>
<td>Muchekamani</td>
<td>Ndua</td>
<td>Steedman 1933</td>
</tr>
<tr>
<td>umquququina</td>
<td>Nguni</td>
<td>Watt & Breyer-Brandwijk 1962</td>
</tr>
<tr>
<td>modula-thwene</td>
<td>Northern Sotho</td>
<td>Palmer & Pitman 1972</td>
</tr>
<tr>
<td>Modulatshwene</td>
<td>Northern Sotho</td>
<td>Von Breitenbach et al. 2001</td>
</tr>
<tr>
<td>Molowla-thoney</td>
<td>Ses.</td>
<td>Burtt Davy 1932</td>
</tr>
<tr>
<td>Mubotjo; mpunutu</td>
<td>Shona</td>
<td>Watt & Breyer-Brandwijk 1962</td>
</tr>
<tr>
<td>iliNcayi; isiNwati</td>
<td>Swazi</td>
<td>Palmer & Pitman 1972</td>
</tr>
<tr>
<td>ili-ncai; isi-awati</td>
<td>Swati</td>
<td>Watt & Breyer-Brandwijk 1962</td>
</tr>
<tr>
<td>um-poyi</td>
<td>Swati</td>
<td>Watt & Breyer-Brandwijk 1962</td>
</tr>
<tr>
<td>musangwe; muthefera</td>
<td>Venda</td>
<td>Palmer & Pitman 1972</td>
</tr>
<tr>
<td>umGzina</td>
<td>Xhosa</td>
<td>Palmer & Pitman 1972</td>
</tr>
<tr>
<td>umxquina</td>
<td>Xhosa</td>
<td>Von Breitenbach et al. 2001</td>
</tr>
<tr>
<td>umhlebe</td>
<td>Xhosa</td>
<td>Von Breitenbach et al. 2001; Watt & Breyer-Brandwijk 1962</td>
</tr>
<tr>
<td>omhlebe</td>
<td>Xhosa</td>
<td>Watt & Breyer-Brandwijk 1962</td>
</tr>
<tr>
<td>isimbi; usasali</td>
<td>Xhosa</td>
<td>Von Breitenbach et al. 2001</td>
</tr>
<tr>
<td>umlahleni</td>
<td>Xhosa</td>
<td>Van Wyk et al. 1997</td>
</tr>
<tr>
<td>umhlebe</td>
<td>Zulu</td>
<td>Hutchings et al. 1996</td>
</tr>
<tr>
<td>umagunda</td>
<td>Zulu</td>
<td>Von Breitenbach et al. 2001</td>
</tr>
<tr>
<td>uMaginda; uMaginda</td>
<td>Zulu</td>
<td>Palmer & Pitman 1972</td>
</tr>
<tr>
<td>umlahlenisefile; igezahlomvu; ijundumlahleni</td>
<td>Zulu</td>
<td>Cunningham 1988; Hutchings et al. 1996</td>
</tr>
<tr>
<td>ugezelombu</td>
<td>Zulu</td>
<td>Ngwenya et al. 2003</td>
</tr>
<tr>
<td>Umgcina</td>
<td>Zulu</td>
<td>Cunningham 1988</td>
</tr>
<tr>
<td>Umxquina</td>
<td>Zulu</td>
<td>Steedman 1933</td>
</tr>
<tr>
<td>inkunzithwatshe; pnephelengeni</td>
<td>Zulu</td>
<td>Hutchings et al. 1996</td>
</tr>
<tr>
<td>inPhephelenganeni</td>
<td>Zulu</td>
<td>Cunningham 1988</td>
</tr>
<tr>
<td>umPhephelenganeni; umBese</td>
<td>Zulu</td>
<td>Palmer & Pitman 1972</td>
</tr>
<tr>
<td>oz-Hibe; um-Gxuna; um-Gunra; Moodlagweene</td>
<td>-</td>
<td>Burtt Davy 1932</td>
</tr>
</tbody>
</table>

Zeyher 538, 7699 (PRE).

ACKNOWLEDGEMENTS

The authors offer their thanks to the University of Johannesburg and German Academic Exchange Service (DAAD) for funding the research. Also, we are much indebted to A.R. Magee (University of Johannesburg), Dr A.I. Konstantinova (Moscow State University), Dr A. Würz (STU), Anne Lise Fourie and Estelle Potgieter (both of the Mary Gunn Library, PRE) for valuable help during the preparation of the manuscript. We thank V. Papworth (BM) for kindly providing us with high resolution images of type specimens in the Banks Herbarium, and the curators and staff of PRE and NBG for allowing us to study their collections.

REFERENCES

PROZINA, M.N. 1960. *Botanicheskaya mikrotekhnika [Botanical microtechnique]*. Vysshaya Shkola, Moscow. [In Russian]

SHIBAKINA, G.V. 1984. Kostyunka kak ekologicheskii tip ploda i nekotorye voprosy terminologii pri opisani plodov v semenitve Araliaceae [A drupe as an ecological fruit type and some terminological matters in the description of fruits in the family Araliaceae]. *Botanicheskii Zhurnal* 69: 1076–1083. [In Russian]

YEMBATROVA, E.YU. 2001. *Caryopsidae: Primaevalielleae Carnales Dumort. i sblihaemykh s nim poryadkob v svyazi s voprosami ikh sistematiiki. [Comparative carpology of the representatives of Carnales Dumort. and related orders in connection with their systematics]*. Ph.D. thesis, Moscow State University, Moscow. [In Russian]
