Short communication

A revision of the African genus *Robynsiophyton* (Crotalarieae, Fabaceae)

J.S. Boatwright *, B.-E. Van Wyk

Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa

Received 23 July 2008; received in revised form 24 November 2008; accepted 27 November 2008

Abstract

The monotypic genus *Robynsiophyton* is revised. *Robynsiophyton vanderystii* occurs in central and southern tropical Africa and is unique in the reduction of the androecium to nine stamens and five fertile anthers. It is morphologically similar to *Pearsonia* and *Rothia* and sister to the latter based on morphological and DNA sequence data. A revision of the genus is presented, including illustrations of vegetative and reproductive features and distributional information.

© 2008 SAAB. Published by Elsevier B.V. All rights reserved.

Keywords: Crotalarieae; Fabaceae; *Robynsiophyton vanderystii*; Taxonomic revision

1. Introduction

Robynsiophyton Wilczek is a poorly known, monotypic genus that occurs in south-central tropical Africa. It is morphologically similar to *Pearsonia* Dümmer and Rothia Pers., suggesting a close relationship with these genera (Polhill, 1976, 1981; Van Wyk, 1991). *Pearsonia* occurs in central and southern tropical Africa, while Rothia is widely distributed throughout tropical Africa, Asia and Australia (Polhill, 1974; Boatwright et al., in press). These three genera differ from the rest of the tribe in their monomorphic anthers and straight styles (Polhill, 1976; Van Wyk, 1991; Van Wyk and Schutte, 1995; Boatwright et al., in press). Chemically they are also unique within Crotalarieae in accumulating angelate esters of hydroxylupanine-type alkaloids (Van Wyk and Verdoorn, 1991). Recently, Boatwright et al. (2008), through the study of molecular (ITS and rbcL) and morphological data, demonstrated that *Pearsonia, Robynsiophyton* and *Rothia* form a strongly supported clade and that the latter two are strongly supported as sister genera (Fig. 1). Doubt regarding the generic status of *Robynsiophyton* has been expressed by previous authors (Polhill, 1976; Van Wyk, 1991), who suggested that it could merely be a local derivative of *Pearsonia*. However, according to Boatwright et al. (2008) the genus is not embedded within *Pearsonia*, but sister to *Rothia* with both of these subsequently sister to *Pearsonia*. These data in combination with the annual life history and the unusual androecium (nine stamens with only five fertile anthers) support the generic concept of *Robynsiophyton*.

The aim of this paper is to present a revision of *Robynsiophyton* with illustrations, a discussion on diagnostic characters and a distribution map.

2. Materials and methods

2.1. Morphology

Morphological data were obtained through the study of herbarium material from BM, K and PRE (abbreviations according to Holmgren et al., 1990). Digital images of critical specimens were obtained from BR and LISC. Illustrations were prepared using a stereoscope (WILD M3Z) with a camera lucida attachment.

3. Results and discussion

A summary of the diagnostic characters for *Robynsiophyton, Rothia* and *Pearsonia* is presented in Table 1. *Robynsiophyton vanderystii* Wilczek is a small annual (or rarely a short-lived perennial) with hairy, reddish-brown branches. It shares with *Rothia* the annual life history, a trait which is not found in
PEARSONIA, a genus comprising perennial herbs or small shrubs. The leaves are digitately trifoliolate and sparsely pubescent adaxially but densely pubescent on the abaxial surface. The narrow stipules are paired at the base of the petiole. Rothia hirsuta (Guill. & Perr.) Bak. has single stipules at each leaf; Rothia indica (L.) Druce has paired stipules; and Pearsonia has the stipules paired or less often absent (Polhill, 1974; Boatwright et al., in press).

The flowers of Pearsonia, Robynsiophyton and Rothia are all relatively unspecialised, with straight or even down-curved styles and monomorphic anthers (Polhill, 1976). In Rothia the anthers are all small and rounded as opposed to the large, elongate anthers of Pearsonia, six of which are attached slightly higher up to the filament (Polhill, 1974, 1976). Robynsiophyton has a reduced number of stamens (from 10 to nine) and only five fertile stamens (the other four stamens lack anthers and are sterile). This is the most notable feature of the genus. In the Crotalarieae, Genistae and Podalyrieae there is great variation in staminal arrangement from completely free stamens (Podalyrieae) to those joined in either an open sheath (Crotalarieae) or closed tube (most Genistae). The anthers may be either dimorphic with alternating basifixed and dorsifixed anthers, or monomorphic as found in Pearsonia, Robynsiophyton and Rothia (a feature that is unique to this clade within the Crotalarieae). Anther characters are very reliable in legumes and usually consistent with other characters, thus providing important insight especially at generic and tribal levels (Bentham, 1843; Polhill, 1976; Boatwright et al., 2008, in press).

The calyx of Robynsiophyton is equally lobed, while in Pearsonia and Rothia the upper lobes are larger than the three lower lobes. In Pearsonia, the upper and lateral lobes on either side are often fused higher up (the so-called “lotononoid” calyx type). Bracts are present in all three genera, but bracteoles are generally lacking in Pearsonia (if present very small) and completely absent in Robynsiophyton and Rothia (Polhill, 1974, 1976).

The pods of Robynsiophyton are relatively short and few-seeded when compared to those of Rothia. The mature seeds are brown, smooth and similar in size to those of R. indica. Robynsiophyton vanderystii has larger seeds than Rothia hirsuta that are even coloured with a smooth surface, whereas those of R. hirsuta are mottled with a somewhat rugose surface (Boatwright et al., in press).

4. Taxonomy

4.1. Robynsiophyton

Type species: R. vanderystii Wilczek.

The genus is monotypic and distinguished by the reduced number of stamens (nine instead of 10) and presence of four staminodes (Table 1). It occurs in central tropical Africa extending from Angola to Zambia in the east.

4.2. R. vanderystii

Type: Democratic Republic of Congo, Lazaret du Sacré-Coeur [1025 BA], Vandyyst s.n. (BR, holo., photo!).

Small, prostrate or ascending annual or short-lived perennial up to ±0.3 m in height. Branches reddish-brown, pubescent. Stipules 5–8 mm long, linear to lanceolate, invariably paired, pubescent. Leaves digitately trifoliolate; petiole shorter than leaflets, 4–7 mm long; leaflets elliptic to oblanceolate, subsessile, sparsely pubescent adaxially and densely so abaxially, terminal leaflet 14–22 × 4–9 mm, lateral leaflets 7–16 × 2.5–6.0 mm, obtuse, base cuneate. Inflorescence axillary or rarely terminal congested racemes, with (2–) 5 to 9 (–10) flowers; pedicel less than 1 mm long; bract linear, 1.5–3.0 mm long, pubescent, caducous; bracteoles absent. Flowers pale yellow, 3–6 mm long. Calyx equally lobed, pubescent, 4–5 mm long; tube 1.5–2.0 mm long; lobes subulate, 1.5–3.0 mm long, tips minutely pubescent on inner surface. Standard 3–5 mm long; claw 1.0–1.5 mm long; lamina elliptic to ovate, 2–4 × 1.0–1.5 mm, obtuse to very slightly emarginate, pilose along dorsal midrib. Wings 2.5–4.5 mm long; claw 1.5–1.8 mm long;

Table 1

<table>
<thead>
<tr>
<th>Character</th>
<th>Robynsiophyton</th>
<th>Rothia</th>
<th>Pearsonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life history</td>
<td>Annual or short-lived perennial</td>
<td>Annual</td>
<td>Perennial</td>
</tr>
<tr>
<td>Stipules</td>
<td>Paired</td>
<td>Paired or single</td>
<td>Paired or absent</td>
</tr>
<tr>
<td>Bracteoles</td>
<td>Absent</td>
<td>Absent</td>
<td>Small or absent</td>
</tr>
<tr>
<td>Calyx</td>
<td>Equally lobed</td>
<td>Sub-equally lobed</td>
<td>Zygomorphic</td>
</tr>
<tr>
<td>Androecium</td>
<td>9 Stamens, 5 rounded anthers, 4 stamnodes</td>
<td>10 Stamens, 10 rounded anthers, 0 stamnodes</td>
<td>10 Stamens, 10 elongated anthers, 0 stamnodes</td>
</tr>
<tr>
<td>Fruit</td>
<td>Oblong to ovate</td>
<td>Linear to ovate or falcate</td>
<td>Ellipsoid to linear-oblong</td>
</tr>
<tr>
<td>Seeds</td>
<td>Brown, smooth</td>
<td>Brown or mottled, smooth or rugose</td>
<td>Light or dark brown, sometimes mottled, smooth</td>
</tr>
</tbody>
</table>

Fig. 1. Phylogenetic position of Robynsiophyton vanderystii based on gene sequences (ITS and rbcl) and morphological data (strict consensus of 370 trees from Boatwright et al., 2008; tree length = 1166; consistency index = 0.53; retention index = 0.84). Numbers above the branches are bootstrap percentages above 50%.
lamina oblong to obovate, as long as or slightly longer than keel, 1.0–2.5 × 0.5–1.0 mm, obtuse, glabrous, with 1–2 rows of sculpturing. Keel 3–4 mm long; claw 1–2 mm long; lamina boat-shaped, 1.5–3.0 × 0.5–0.8 mm, obtuse, glabrous, sometimes with a very slight pocket. Stamens 9, anthers monomorphic with 5, sub-basifixed anthers alternating with 4 staminodes. Pistil subsessile, pubescent, ovary elliptic, 1.5–2.0 × 0.5–0.8 mm with ±5 to 8 ovules; style straight, 1.5–1.8 mm long, glabrous. Pods oblong to ovate, laterally compressed, subsessile, 7–10 × 3–4 mm, ±2 to 8 seeded, dehiscent. Seeds oblique-cordiform, 1.0–1.5 × 1.0–1.2 mm, brown, smooth (Fig. 2). Flowering time: April. Plants appear to be inconspicuous and are poorly collected so that the flowering time needs confirmation.

5. Distribution and habitat

R. vanderystii occurs in moist, sandy soils and is especially common along roadsides. Very few specimens are available for study and these include collections from Angola, the Democratic Republic of Congo and Zambia, but it is likely that the distribution range is more extensive (Fig. 3).

5.1. Additional specimens examined

Angola:
– 0614: Kimbambu, Madimba (–AA), Pauwels 6470 (PRE).

Fig. 2. Morphology of Robynsiophyton vanderystii (drawings by JSB): (a) leaf in abaxial view; (b1–b2) stipules; (c) flower in lateral view; (d) bract; (e) outer surface of the calyx (upper lobes to the left); (f) standard petal; (g) wing petal; (h) keel petal; (i) androecium showing the five uniform anthers and four staminodes; (j) anthers (carinal anther on the left); (k) pistil; (l) pod in lateral view; (m) seed in lateral view. Voucher specimens: (c, d, f, g, h, i, j, k) McCallum Weston 717 (K); (e) Lisowski 20326 (K); (f) Richards 9321 (K); (a, b1–b2) Richards 18144 (K); (m) Exell and Mendonça 657 (K). Scale bars: (a–m) 1 mm.
Democratic Republic of Congo:
 – 0416: Bakama (–AB), Flamigni s.n. (K).
 – 0515: Bas-Congo, Kisantu (–AA), Vanderyst s.n. (BM, K); Bas-Congo, Kimpako (–AB), Vanderyst 42290 (K).
 – 1025: Haut-Shaba, Kolwezi (–DA), Lisowski 20326, 20333 (K).
Zambia:
 – 0831: Chilongowelo, Abercorn (–CA), McCallum Weston 717 (K); Mpuulengu Abercorn road, close to Chilongowelo turning (–CA), Richards 5309, 5317, 18144 (K), Richards 11097 (K, PRE).
 – 0929: Kawambwa, Timnatushi Falls (–CC), Richards 9319a, 9321 (K).
 – 1124: Mwinilunga (–CD), Mutimushi 3416 (K).

Acknowledgements

Funding from the National Research Foundation (NRF) and University of Johannesburg are gratefully acknowledged. The authors would like to thank the curators and staff of the listed herbaria for making specimens available for study or on loan.

References

