Ethnobotanical plant uses in the KwaNibela Peninsula, St Lucia, South Africa

B.M. Corrigan a, B.-E. Van Wyk a,⁎, C.J. Geldenhuys b, J.M. Jardine a

a Department of Botany and Plant Biotechnology, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa
b Department of Forest and Wood Science, University of Stellenbosch, c/o Forestwood cc., PO Box 228, La Montagne 0184, Pretoria, South Africa

Received 1 April 2010; received in revised form 15 September 2010; accepted 28 September 2010

Abstract

Ethnobotanical field studies were conducted for the first time in the KwaNibela Peninsula of southern Maputaland, KwaZulu-Natal, to document indigenous knowledge about useful plants. The vernacular names and uses of 82 plant species were recorded and compared to published Zulu and Swazi knowledge. Medicines for skin disorders, toothache, wounds, worms, chest and throat ailments, infertility and purgatives are still commonly used. Superstition and divination play a major role in the traditional knowledge system of the people of KwaNibela with 24 plants used for this purpose. Three KwaNibela medicinal plants (Erythroxylum delagoense, Putterickia verrucosa, and Teclea natalensis) appear to be new records, not previously reported in the general scientific literature. The list also includes 61 novel uses of plants and another 15 new variations on known (published) uses. Ten previously unpublished vernacular names are presented, together with an additional 19 new variants of known names. These new additions to the scientific literature confirm that indigenous knowledge in KwaZulu-Natal is not yet completely recorded.

© 2010 SAAB. Published by Elsevier B.V. All rights reserved.

Keywords: Indigenous knowledge; KwaZulu-Natal; Maputaland; Medicinal plants; Zulu culture

1. Introduction

South Africa is a developing country with a large rural population that relies on natural resources for various purposes such as building, craftwork, foods, cosmetics and medicines. The diversity of ethnic groups in South Africa has given rise to a melting pot of traditional indigenous knowledge, from the boererade of the Afrikaans community and the traditional knowledge of the Khoikhoi and San tribes in the Karoo region (Van Wyk et al., 2008), to the traditional knowledge of the Zulu, Xhosa, Basotho and Venda peoples, across the extent of the country.

The KwaZulu-Natal Province is the strong-hold of the isiZulu-speaking ethnic group and, apart from being home to a rich cultural society; KwaZulu-Natal has a wealth of biological diversity with many different and unique biomes. Bantu-speaking tribes were the forerunners of the Nguni cultural groups (Zulu, Xhosa, Swati and Ndebele) and they migrated south into the eastern regions of South Africa from central Africa as early as the eleventh century (Bruton and Cooper, 1980). In 2001, there were 10,677,006 isiZulu-speaking people in South Africa, of which 71% resided in KwaZulu-Natal (StatsSA, 2001). Zulu plant names and their uses have been extensively documented as many rural communities rely heavily on their environment for traditional medicines, food and building materials. Bryant (1966) provided a detailed commentary and account of the ethnobotany and the medicine men of the Zulu tribe. He found that the indigenous knowledge system worked on the premise that the symptom was the ailment and therefore, the symptoms were treated and not necessarily the root cause of the symptoms. The Zulu medicine men had limited knowledge of the anatomy and physiology of the human body. Many of the traditional treatments involved some form of divination and superstitious practices (Kaigh, 1947). The differences between Zulu and Western orthodox medicines are thought to be as result of the differences in the understanding of disease and illness and this is evident in the way in which treatments are administered and superstition is incorporated. Practitioners of Zulu plant use range from the layperson to the herbalists, diviners and traditional doctors and

⁎ Corresponding author. Tel.: +27 11 559 2412; fax: +27 11 559 2411.
E-mail address: bevanwyk@uj.ac.za (B.-E. Van Wyk).

0254-6299/$ - see front matter © 2010 SAAB. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.sajb.2010.09.017
knowledge is transferred from generation to generation orally (De Wet et al., 2010; Hutchings, 1989).

The KwaNibela Peninsula extends into the northern reaches of Lake St Lucia at the southern extent of Maputaland in northeastern part of KwaZulu-Natal, South Africa (Fig. 1). It is located at 27°56′10.9″S and 32°26′35.9″E and covers an area of approximately 3690 ha. It borders on the iSimangaliso World Heritage site, which is an area of great biodiversity value and is included in the Maputaland–Pondoland–Albany Biodiversity Hotspot. The area of KwaNibela does not have any formal conservation status and is covered by coastal forest patches interspersed with Maputaland Coastal Belt vegetation (Mucina and Rutherford, 2006).

The peninsula is home to a rural Zulu-speaking community of approximately 4245 people (StatsSA, 2001), unevenly distributed throughout the peninsula in family homesteads and concentrated largely in the northern half of the peninsula. Maize (Zea mays) and papaya (Carica papaya) are the main subsistence crops cultivated and there is a local market at the north of the peninsula. The community is governed by tribal authority and an induna (chief) and there are several izangoma (diviners/ traditional healers) that provide traditional medicines and advice to the community using plant and animal species from the forest. The community members also harvest plant species for food (Canthium species, Grewia caffra, Lagynias lasiantha), medicine (Azima tetracantha, Combretum molle, Syzygium cordatum) and building materials (Spirostachys africana, Toddaliopsis bremekampii). According to the induna, Lazarus Mdluli, the present-day KwaNibela people migrated from Swaziland and settled in the peninsula in 1865. This may have had an influence on the local dialect (which is not particularly discernible) and the local traditional knowledge related to plant species. KwaNibela is relatively isolated and certain plant uses may be unique to the peninsula.

The aim of the study was to compare the traditional uses and vernacular names of the most commonly used species in

Fig. 1. Map of the northern part of Lake St Lucia, northeastern KwaZulu-Natal, South Africa, showing the study area (the KwaNibela Peninsula).
KwaNibela with mainstream recorded Zulu uses. While Zulu indigenous knowledge is relatively well recorded (Bryant, 1966; Cunningham, 1988; Gerstner, 1938, 1939, 1941; Hutchings et al., 1996; Hutchings, 1989; Pooley, 1993; Watt and Breyer-Brandwijk, 1962), different areas and different communities may have local variations of the same knowledge system or completely new uses for certain plant species. Documentation of plant use is, therefore, imperative in an area such as this, which has not been studied previously and is at risk of erosion of the indigenous knowledge as rural–urban migration becomes more common. While many young people are settling in KwaNibela, there are growing numbers of the youth leaving the peninsula to seek work in the cities and the ability and, in some cases, interest to learn the traditional knowledge system is lost.

2. Methodology

The survey was conducted in the KwaNibela Peninsula from June 2007 to April 2009. A considerable length of time was needed to become acquainted with a few of the community members, gaining their trust and, finally, enlisting the assistance of five persons as traditional knowledge experts, informants and translators. The first three informants all gained their general knowledge from own experience: Themba Nxumalo (TN), a KwaNibela resident, Stembiso Mdluli (SM) and Goodenough (“Sgwili”) Mdluli (GM), both sons of the Induna. Sibusiso Falakhe (SF) is a young sangoma who obtained his knowledge from his mother and grandfather, both of whom were izangoma. Mr. Gumede (G) is an elderly sangoma. Translators were used to communicate with the experts, who were not familiar with the English language. Interviews were conducted and the rapid appraisal approach (Martin, 1995) was used to record the uses of plant species. This approach is a bridge between formal surveys and more unstructured methods, such as field observation and interviews and it allows for community participation in a more informal setting. This is often considered more effective in ethnobotanical surveys.

A list of ethnobotanically important KwaZulu-Natal plant species, together with common species in KwaNibela and Maputaland endemic species, was compiled and used during the interview process. Verification of the information was done by indicating the known Zulu name to the expert and asking him to point out the correct plant species from a number of photographs of similar species. Rapid appraisal was used during walks through the forest where the expert/informant was asked to point out important species and indicate the uses thereof. Voucher specimens were collected and are housed at University of Johannesburg Herbarium (JRAU).

Vernacular names and the local uses of 82 plant species were recorded (Table 1). The KwaNibela names and uses were compared to known Zulu and Swazi names and uses by consulting a variety of ethnobotanical sources (including Arnold et al., 2002). A complete comparison between KwaNibela uses and other known uses has been compiled and is available from the authors on request (Corrigan, 2009). The plant species are listed alphabetically in Table 1 by their scientific name, together with family name and local name (in Zulu). Authorities for scientific names are given in Table 1 and are not repeated elsewhere in the text. All the known Zulu names, as listed by RF Raymond in “A glossary of Zulu plant names” (privately published in 2005) and Hutchings et al. (1996), are provided as a basis with which to determine deviations from mainstream Zulu names. Swazi names, as listed in Adeniji et al. (1998) and Dlamini (1981) are also given in order to identify any possible influences, which may corroborate the verbal reports of the KwaNibela people having migrated from Swaziland during the 1860s. The anecdotes or uses, as given by the indicated informants/experts, are recorded exactly as they were described in order to best preserve the accuracy of the information. Personal commentary is indicated in parenthesis. Partially new records are indicated by the superscript b and entirely new records are indicated by a.

3. Results and discussion

Traditional uses of 82 species of plants in KwaNibela are presented in Table 1, together with vernacular names and literature references where uses have been recorded in the scientific literature.

New names records are presented in Table 1 for 10 species: Azima tetracantha, Balanites maughanii, Canthium ciliatum, Canthium spinosum, Carissa tetramera, Diospyros villosa, Erythroxylum delagoense, Euclea divinorum, Grewia microthyrsa and Hibiscus cannabinus. Another 19 of the vernacular names encountered in KwaNibela differ slightly from the recorded Zulu names.

Three of the species (E. delagoense, Putterlickia verrucosa and Teclea natalensis) are used regularly in KwaNibela but, to our knowledge, have not been recorded in the general scientific literature, prior to this study (Corrigan, 2009). The fruits of E. delagoense are an important local medicine for throat and respiratory ailments in infants. The local cleaning ritual of sangomas involving P. verrucosa roots was not known before. It may be valuable to further explore the use of T. natalensis fruits and their possible role in dental care.

Interesting new Zulu traditional use records for 45 well-known species, as well as 16 poorly documented species, are presented in Table 1. The local uses for these 61 species appear to have remained unpublished, as similar Zulu uses could not be found in the literature. In addition, there are 15 partially new use records (i.e., variations on previously recorded uses) for some well-documented species, indicated in Table 1.

The majority of remedies recorded in KwaNibela are associated with magical purposes (24 species), such as good luck charms or warding off evil spirits. Other main categories and the number of species recorded for each are hunting (2), food/drink (22), repellent (insect/snake) (2), timber (building) (2), firewood (2), general tonic (1), infertility (4), skin disorders/treatment (3), pain/anxiety/inflammation (3), wound healing (6), respiratory conditions (8), dental ailments (8), gastro-intestinal disorders (4), parasitic infection (3), ear/nose/throat ailments (2) and neurological disorders (1). A number of the remedies were
<table>
<thead>
<tr>
<th>Species name; family name; vernacular name(s); voucher specimens [BMC] and photographs [DSC]</th>
<th>Known Zulu name(s) [where applicable; Swazi name(s) are indicated by the superscript (S)]</th>
<th>Anecdote or use(s) recorded in Kwanibela</th>
<th>Known Zulu (and Swazi) uses (cited directly from source)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Acacia karroo Hayne (Fabaceae); umuNgga; istiNgga; [BMC125]; [DSC05]</td>
<td>umuNgga (R), uFaba (R), uGaga (R), istKhombe (R); isinga (T) (S)</td>
<td>SF: The “skin of the root” (root bark) is ground, infused in water, and sprinkled on the garden to repel snakes.</td>
<td>Used for medicinal and magical purposes and has toxic characteristics (Hutchings et al., 1996; Pooley, 1993). The bark is used for many ailments, such as cattle poisoning and stomach ache. It is taken for sorcery-induced ailments (Watt and Breyer-Brandwijk, 1962) and used as an astrigent medicine (Gerstner, 1941). The roots are used for colicky babies (Watt and Breyer-Brandwijk, 1962) and general body pains, dizziness, convulsions, venereal diseases, as an aphrodisiac, and to kill parasites in fowl runs or the house (Gelfand et al., 1985). No similar Zulu uses could be found in the literature. In Swaziland, the gum is used for mouth ulcers and throat thrush and is reputed to delay puberty. Bark and leaves are for diaphoretic and dysentery (Dlamini, 1981).</td>
</tr>
<tr>
<td>2. Acacia robusta Burch. subsp. clavigera (E. Mey.) Brenan (Fabaceae); umNgamaz; [DSC07]</td>
<td>umNgamaz (R); umngqawe (H); umngamazi (D) (S); umngamazi (T) (S)</td>
<td>SF: The wood can be used for braai-wood.</td>
<td>Used medicinally (Hutchings et al., 1996) and for magical purposes (Pooley, 1993). The bark is used to dispatch snakes (Palmer and Pitman, 1972a). The stem is hard for chest complaints, and it can be applied for skin ailments. Roots are poisonous (Pooley, 1993). Used for firewood in Swaziland (Dlamini, 1981).</td>
</tr>
<tr>
<td>3. Acacia xanthophloea Burch. (Fabaceae); umHlosinga; umKhanyagule; [DSC105]</td>
<td>umHlosinga (R); umKhanyagule (R); umHlosinga (R); umKhanyagule (R); umKhanyagule (R)</td>
<td>SF: A piece of the bark is ground, infused in water, and the whole body is bathed in the water to ensure that people do not think of you as a bad person (i.e., thief).</td>
<td>The root is used to make tonic, taken as a stimulant for seediness or depression, caused by febrile conditions known as “umhukhine” (cold/fever/influenza) (Bryant, 1966). The plant is used as a protective charm (Gerstner, 1938).</td>
</tr>
<tr>
<td>4. Adenia gummosifera (Harv.) Harms (Passifloraceae); umPhindamshaya; [BMC215]; [DSC09]</td>
<td>umPhindamshaya (R); umFula (R); umFida (R); umPnda (R); phindamshaya (T) (S)</td>
<td>SF: Outside of the home, the stem is boiled in water, and the body is steamed and bathed in same water for revenge on enemies.</td>
<td>Used for medicinal and magical purposes and has toxic characteristics (Cunningham, 1988; Dlamini, 1981; Hutchings et al., 1996; Pooley, 1993). The bark is used as a good luck charm (Cunningham 2166 NU).</td>
</tr>
<tr>
<td>5. Afzelia quanzensis Welw. (Fabaceae); umDavuza; [DSC102]</td>
<td>umDavuza (R); umHlakave (R); umHlakave (R); umHvuthwa (R); inKehl (R); inKeke (R); inKehl (B); Mkalikedi (S); Umbola (S)</td>
<td>SF: The seeds are kept in the wallet for luck with money.</td>
<td>The root is used to make tonic, taken as a stimulant for seediness or depression, caused by febrile conditions known as “umhukhine” (cold/fever/influenza) (Bryant, 1966). The plant is used as a protective charm (Gerstner, 1938).</td>
</tr>
<tr>
<td>6. Albizia adianthifolia (Schumach.) W. Wright (Fabaceae); iGowane; [BMC208]</td>
<td>iGowane (R); umBhelelehe (R); umBhelele (R); umDlandlothi (R); umGudawenka (R); umHlanhlothi (R); umNdlandlothi (R); umNdlandlothi (R); umNelelede (R); uSok (R); umkhubakhombe (AD) (S)</td>
<td>SF: The leaves are boiled in water and the body is covered over the steam to cure “chicken pox”.</td>
<td>Used for medicinal and magical purposes and has toxic characteristics (Cunningham, 1988; Hutchings et al., 1996; Pooley, 1993; Walker, 1996). The bark and roots are used for eczema and other itchy skin complaints (Bryant, 1966). They are also used to make love-charm emetics and ememas administered to pregnant women to clear their urine (Watt and Breyer-Brandwijk, 1962; Pujol, 1990). Taken as snuff for headaches. In Swaziland, the bark and roots are used for skin diseases, scabies, and uterine problems. Leafy twigs are used to treat abscesses (Dlamini, 1981). Stembark is used for epilepsy, gonorrhoea, and ophthalmic complaints. (Adeniji et al., 1998; Van Puyvelde et al., 1983).</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 1 (continued)

<table>
<thead>
<tr>
<th>Species name (vernacular name)</th>
<th>Known Zulu (and Swazi) uses (cited directly from source)</th>
<th>Related uses recorded in Kwanibela</th>
<th>Literature (References)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Aspilia verticillata (Aspilia)</td>
<td>Used for medicinal and magical purposes and has toxic characteristics (Cunningham and Pooley, 1993; Pooley, 1993). The root is used to ward off evil spirits (Palmer and Pitman, 1972).</td>
<td>GM: Used to make emetics. Roots are mixed with sawdust and used to make emetics. SF: The leaves are mixed with water and used to make emetics.</td>
<td>(Palmer and Pitman, 1972c)</td>
</tr>
<tr>
<td>8. Aloe rupestris (Aloe)</td>
<td>Used for medicinal and magical purposes and has toxic characteristics (Cunningham and Pooley, 1993; Pooley, 1993). The root is used to ward off evil spirits (Palmer and Pitman, 1972).</td>
<td>GM: Used to make emetics. Roots are mixed with sawdust and used to make emetics. SF: The leaves are mixed with water and used to make emetics.</td>
<td>(Palmer and Pitman, 1972c)</td>
</tr>
<tr>
<td>9. Apodytes dimidiata (Apodytes)</td>
<td>Used for medicinal and magical purposes and has toxic characteristics (Cunningham and Pooley, 1993; Pooley, 1993). The root is used to ward off evil spirits (Palmer and Pitman, 1972).</td>
<td>GM: Used to make emetics. Roots are mixed with sawdust and used to make emetics. SF: The leaves are mixed with water and used to make emetics.</td>
<td>(Palmer and Pitman, 1972c)</td>
</tr>
<tr>
<td>10. Azima tetracantha (Azima)</td>
<td>Used for medicinal and magical purposes and has toxic characteristics (Cunningham and Pooley, 1993; Pooley, 1993). The root is used to ward off evil spirits (Palmer and Pitman, 1972).</td>
<td>GM: Used to make emetics. Roots are mixed with sawdust and used to make emetics. SF: The leaves are mixed with water and used to make emetics.</td>
<td>(Palmer and Pitman, 1972c)</td>
</tr>
</tbody>
</table>
made from the leaves to soak feet to relieve pain in the feet.\(^b\)

GM: The fruit is eaten.

Adeniji et al., 1998

Fruit is used medicinally (\(^b\)), and *B. micrantha* is used to treat asthma in Swaziland (\(^b\)).

Fruit is eaten.

RH

No similar Zulu uses could be found in the literature. Roots are used as a cleanser and roots and leaves are used medicinally in Swaziland (\(^b\)).

SF: The bark is mixed with *umSukumbili* (Garadinia sp?), burned in the fire and the coals are ground and put on a wound for healing.\(^b\)

TN: The fruit is crushed and mixed with water to make a refreshing drink.

Dlamini, 1981

No similar Zulu uses could be found in the literature.

SF: The fruit is eaten.

GM: The fruit is eaten.

RH

No similar Zulu uses could be found in the literature. Used for medicinal purposes in Swaziland and the fruit is edible (\(^b\)).

SF: The roots are dried, mixed with fat, and rubbed on the face for good luck with a job.\(^b\)

Dlamini, 1981

SF: An infusion of the leaf is taken to remove worms from the body.\(^b\)

TN: When someone puts *muthi* on you to make you itchy – the plant is used to stop the itchiness.\(^b\)

SF: The leaves are used in steam baths or for chest complaints. Plants are used for fevers (\(^b\)).

Dlamini, 1981

SF: No medicinal use. If someone dies, a cutting is planted on the site to mark the grave.

RH

SF: The leaves are used as wound dressing. Leaves and roots are used as a snakebite antidote. Roots are used to treat abortion and constipation. Inner bark is used to treat stomach complaints. Plants are used for fevers (\(^b\)).

Dlamini, 1981

SF: If you eat too much sugar, an infusion of the root bark is prepared and the water is taken to make you vomit.\(^b\)

Dlamini, 1981

SF: An infusion of the leaf is taken to remove worms from the body.\(^b\)

TN: The leaves are used for chest complaints.\(^b\)

Dlamini, 1981

SF: No medicinal use. If someone dies, a cutting is planted on the site to mark the grave.\(^b\)

SF: The root bulb is boiled and when still hot, put on a swollen limb to ease swelling.\(^b\)

Dlamini, 1981

SF: The leaves are used in a mixture to treat stomach complaints (\(^b\)). They are used with milk to treat dysentery and diarrhea.

Dlamini, 1981

SF: No medicinal use. If someone dies, a cutting is planted on the site to mark the grave.\(^b\)

SF: The fruit is crushed and mixed with water to make a refreshing drink.

Dlamini, 1981

SF: The bark is mixed with *umSukumbili* (Garadinia sp?), burned in the fire and the coals are ground and put on a wound for healing.\(^b\)

Dlamini, 1981

SF: An infusion of the leaf is taken to remove worms from the body.\(^b\)

TN: When someone puts *muthi* on you to make you itchy – the plant is used to stop the itchiness.\(^b\)

SF: The leaves are used as wound dressing. Leaves and roots are used as a snakebite antidote. Roots are used to treat abortion and constipation. Inner bark is used to treat stomach complaints. Plants are used for fevers (\(^b\)).

Dlamini, 1981

SF: The leaves are used in steam baths or for chest complaints. Plants are used for fevers (\(^b\)).

Dlamini, 1981

SF: No medicinal use. If someone dies, a cutting is planted on the site to mark the grave.\(^b\)

SF: The leaves are used as wound dressing. Leaves and roots are used as a snakebite antidote. Roots are used to treat abortion and constipation. Inner bark is used to treat stomach complaints. Plants are used for fevers (\(^b\)).

Dlamini, 1981

SF: An infusion of the leaf is taken to remove worms from the body.\(^b\)

SF: There is no mention of a plant with this name in the literature.

Dlamini, 1981

SF: No medicinal use. If someone dies, a cutting is planted on the site to mark the grave.\(^b\)

SF: The leaves are used as wound dressing. Leaves and roots are used as a snakebite antidote. Roots are used to treat abortion and constipation. Inner bark is used to treat stomach complaints. Plants are used for fevers (\(^b\)).

Dlamini, 1981

SF: An infusion of the root is taken to make a person vomit.\(^b\)

SF: The root bulb is boiled and when still hot, put on a swollen limb to ease swelling.\(^b\)

Dlamini, 1981

SF: No medicinal use. If someone dies, a cutting is planted on the site to mark the grave.\(^b\)

SF: The leaves are used as wound dressing. Leaves and roots are used as a snakebite antidote. Roots are used to treat abortion and constipation. Inner bark is used to treat stomach complaints. Plants are used for fevers (\(^b\)).

Dlamini, 1981

SF: No medicinal use. If someone dies, a cutting is planted on the site to mark the grave.\(^b\)

SF: The leaves are used as wound dressing. Leaves and roots are used as a snakebite antidote. Roots are used to treat abortion and constipation. Inner bark is used to treat stomach complaints. Plants are used for fevers (\(^b\)).

Dlamini, 1981

SF: No medicinal use. If someone dies, a cutting is planted on the site to mark the grave.\(^b\)

SF: The leaves are used as wound dressing. Leaves and roots are used as a snakebite antidote. Roots are used to treat abortion and constipation. Inner bark is used to treat stomach complaints. Plants are used for fevers (\(^b\)).

Dlamini, 1981

SF: No medicinal use. If someone dies, a cutting is planted on the site to mark the grave.\(^b\)

SF: The leaves are used as wound dressing. Leaves and roots are used as a snakebite antidote. Roots are used to treat abortion and constipation. Inner bark is used to treat stomach complaints. Plants are used for fevers (\(^b\)).

Dlamini, 1981

SF: No medicinal use. If someone dies, a cutting is planted on the site to mark the grave.\(^b\)

SF: The leaves are used as wound dressing. Leaves and roots are used as a snakebite antidote. Roots are used to treat abortion and constipation. Inner bark is used to treat stomach complaints. Plants are used for fevers (\(^b\)).

Dlamini, 1981

SF: An infusion of the root is taken to make a person vomit.\(^b\)

SF: The root bulb is boiled and when still hot, put on a swollen limb to ease swelling.\(^b\)

Dlamini, 1981

SF: No medicinal use. If someone dies, a cutting is planted on the site to mark the grave.\(^b\)

SF: The leaves are used as wound dressing. Leaves and roots are used as a snakebite antidote. Roots are used to treat abortion and constipation. Inner bark is used to treat stomach complaints. Plants are used for fevers (\(^b\)).

Dlamini, 1981

SF: No medicinal use. If someone dies, a cutting is planted on the site to mark the grave.\(^b\)

SF: The leaves are used as wound dressing. Leaves and roots are used as a snakebite antidote. Roots are used to treat abortion and constipation. Inner bark is used to treat stomach complaints. Plants are used for fevers (\(^b\)).

Dlamini, 1981

SF: No medicinal use. If someone dies, a cutting is planted on the site to mark the grave.\(^b\)

SF: The leaves are used as wound dressing. Leaves and roots are used as a snakebite antidote. Roots are used to treat abortion and constipation. Inner bark is used to treat stomach complaints. Plants are used for fevers (\(^b\)).

Dlamini, 1981

SF: No medicinal use. If someone dies, a cutting is planted on the site to mark the grave.\(^b\)

SF: The leaves are used as wound dressing. Leaves and roots are used as a snakebite antidote. Roots are used to treat abortion and constipation. Inner bark is used to treat stomach complaints. Plants are used for fevers (\(^b\)).

Dlamini, 1981

SF: No medicinal use. If someone dies, a cutting is planted on the site to mark the grave.\(^b\)

SF: The leaves are used as wound dressing. Leaves and roots are used as a snakebite antidote. Roots are used to treat abortion and constipation. Inner bark is used to treat stomach complaints. Plants are used for fevers (\(^b\)).

Dlamini, 1981

SF: No medicinal use. If someone dies, a cutting is planted on the site to mark the grave.\(^b\)

SF: The leaves are used as wound dressing. Leaves and roots are used as a snakebite antidote. Roots are used to treat abortion and constipation. Inner bark is used to treat stomach complaints. Plants are used for fevers (\(^b\)).

Dlamini, 1981

SF: No medicinal use. If someone dies, a cutting is planted on the site to mark the grave.\(^b\)

SF: The leaves are used as wound dressing. Leaves and roots are used as a snakebite antidote. Roots are used to treat abortion and constipation. Inner bark is used to treat stomach complaints. Plants are used for fevers (\(^b\)).

Dlamini, 1981

SF: No medicinal use. If someone dies, a cutting is planted on the site to mark the grave.\(^b\)

SF: The leaves are used as wound dressing. Leaves and roots are used as a snakebite antidote. Roots are used to treat abortion and constipation. Inner bark is used to treat stomach complaints. Plants are used for fevers (\(^b\)).

Dlamini, 1981

SF: No medicinal use. If someone dies, a cutting is planted on the site to mark the grave.\(^b\)

SF: The leaves are used as wound dressing. Leaves and roots are used as a snakebite antidote. Roots are used to treat abortion and constipation. Inner bark is used to treat stomach complaints. Plants are used for fevers (\(^b\)).

Dlamini, 1981

SF: No medicinal use. If someone dies, a cutting is planted on the site to mark the grave.\(^b\)

SF: The leaves are used as wound dressing. Leaves and roots are used as a snakebite antidote. Roots are used to treat abortion and constipation. Inner bark is used to treat stomach complaints. Plants are used for fevers (\(^b\)).
Table 1 (continued)

<table>
<thead>
<tr>
<th>Species name; family name; vernacular name(s); voucher specimens [BMC] and photographs [DSC]</th>
<th>Known Zulu name(s) [where applicable, Swazi name(s) are indicated by (S)]</th>
<th>Anecdote or use(s) recorded in Kwanibela</th>
<th>Known Zulu (and Swazi) uses (cited directly from source)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26. Dalbergia armata M.Mey. (Fabaceae); umBhuthawo; [BMC28]</td>
<td>umHhhlhwo R; umThathawo R; licothle ²(S)</td>
<td>SF: The roots are boiled in water and the water is gargled to relieve toothache. No similar Zulu uses could be found in the literature.</td>
<td>The branches are used to make muzzles for calves to prevent them from suckling (Coates Palgrave, 1977). No similar Zulu uses could be found in the literature.</td>
</tr>
<tr>
<td>27. Dalbergia schlecteri Harms (Fabaceae); umThwaba; [BMC49]; [DSC36]</td>
<td>umThwa R</td>
<td>GM: The pods are eaten. SF: The roots are mixed with uMavumbu (Uvaria sp.) and infused in water and ingested to stop anus from itching (possible de-wormer?). No similar Zulu or Swazi uses could be found in the literature.</td>
<td>Used for medicinal purposes (Hutchings et al., 1996; Pooley, 1993). The ground bark is applied to burns, and the wood is reported to be insect-proof (Palmer and Pitman, 1972b). No similar Zulu or Swazi uses could be found in the literature.</td>
</tr>
<tr>
<td>28. Diospyros cinerosa (L.) Wight & Am. (Fabaceae); uMgacane; uSkhishane⁵; [BMC199]; [DSC37]</td>
<td>umShshane R; uGagane R⁵; uGugu R; uNakelambo R; uUzhanzane R⁵; isiZaka R; umZlwembe R⁵; nzlwembe ⁵(S); umxhene ⁵(S)</td>
<td>GM: The wood is used to braai. SF: The pods are boiled, removed from the water, and the water is left to cool. Drops of water are put in the ear to draw out an insect.⁵ No similar Zulu uses could be found in the literature.</td>
<td>Used for medicinal and magical purposes and has toxic characteristics (Cunningham, 1988; Cunningham and Zondi, 1991; Pooley, 1993; Walker, 1996). The roots are used as ingredients in a mixture taken to ease pain or rubbed into incisions cut over painful area (Palmer and Pitman, 1972b). No similar Zulu uses could be found in the literature.</td>
</tr>
<tr>
<td>29. Diospyros villosa (L.) De Winter (Ebenaceae); iPoyiPoyi; [BMC185]</td>
<td>umBongisa R⁵; inDodemnyama R⁵; uMshimbishi R⁵; [BMC32]</td>
<td>SM: The leaves of iPoyiPoyi are chewed to clean and whiten teeth.⁵ No similar Zulu uses could be found in the literature.</td>
<td>Many Swazi medicinal uses, possible antibiotic, and pain relief (Dlamini, 1981). Roots are used for local anesthesia and as a snakebite antidote. Used as firewood. Used for medicinal purposes (Hutchings et al., 1996; Watt and Breyer-Brandwijk, 1962; Williams, 2007). No similar Zulu or Swazi uses could be found in the literature.</td>
</tr>
<tr>
<td>30. Euclea divinorum (Burtt Davy) R.H.Archer (Celastraceae); iQwaza [BMC122]; [DSC28]</td>
<td>inGwawama R⁵; umGugu R⁵; inQuota R⁵</td>
<td>SF: When still an apprentice of a sangoma, an infusion of the roots and leaves are taken to vomit and cleanse in order to make the transition to a sangoma.⁵ No similar Zulu uses could be found in the literature.</td>
<td>Used for medicinal and magical purposes and has toxic characteristics (Cunningham, 1988; Dlamini, 1981; Hutchings et al., 1996; Pooley, 1993). The bark is taken for stomach ache and fevers (Gerstner, 1939). It is regarded as best available treatment for such ailments (Palmer and Pitman, 1972b). The bark is taken for diarrhea and intestinal cramps (Pupel, 1990). No similar Zulu uses could be found in the literature.</td>
</tr>
<tr>
<td>31. Euclea racemosa Thumb. (Fabaceae); umSsinsi [DSC106]</td>
<td>umSsinsi R⁵</td>
<td>T: The seeds are strong enough to make necklaces and placed along the fence of a homestead by an inviga to prevent the entry of thieves onto the property.⁵ No similar Zulu uses could be found in the literature.</td>
<td>Used for medicinal and magical purposes and has toxic characteristics (Hutchings et al., 1996; Pooley, 1993; Walker, 1996). The leaves are used in a mixture for urinary complaints (Hulme, 1954) known as ndondo (stone in the bladder) and for venereal diseases (Bryant, 1966). Used for earache. No similar Zulu uses could be found in the literature.</td>
</tr>
<tr>
<td>32. Erythrina caffra Thomb. (Fabaceae); umSsinsi [DSC106]</td>
<td>umSsinsi R⁶; iKati R⁶; umSsinsana D⁶(S)</td>
<td>SF: A cutting is planted in the garden to ward off evil spirits.⁶ No similar Zulu uses could be found in the literature.</td>
<td>Used for medicinal purposes (Pooley, 1993; Walker, 1996). The roots used for bronchitis, tuberculosis, chest problems, and sprains (Coates Palgrave, 1977). No similar Zulu uses could be found in the literature.</td>
</tr>
<tr>
<td>33. Erythroxylum delagoense Schinz (Erythroxylaceae); inKhuthuzo [BMC26]; [DSC42]</td>
<td>umPhizi R⁵; uBhamathathi D⁵(S); umBhamathathi R⁶; umBhelethelemangaphandle R⁵; uMhathathi R⁶; uBhuthu R⁶; uMhathathi R⁶; gobe D⁶(S)</td>
<td>SF: The berries are given to babies for throat and chest problems.⁶ No similar Zulu uses could be found in the literature.</td>
<td>No uses are recorded for E. delagoense; however, E. pictum is used medicinally (Hutchings et al., 1996). Used by the sangoma for washing ceremonies and medicinally as emetic and herb booster (Dlamini, 1981).</td>
</tr>
<tr>
<td>34. Euclea divinorum Hier (Ebenaceae); isiGcakaca [BMC123]; [DSC44]</td>
<td>umHhhlhwo R; umSsdsansana R⁶; iKhambas D⁶(S); umShksana R⁶; sjelele D⁶(S)</td>
<td>SF: Hunters mix the bark with water and sprinkle the water in the tracks of an animal so that it will not detect the hunters.⁶ No similar Zulu uses could be found in the literature.</td>
<td>Used for medicinal purposes (Cunningham, 1988; Cunningham and Zondi, 1991; Dlamini, 1981; Hutchings et al., 1996; Pooley, 1993). The fruit is taken as a strong purgative (Gerstner, 1939; Palgrave, 1977). No similar Zulu uses could be found in the literature. Wood reputed to have supernatural powers and is never used as fuel in Swaziland. Branches are used as a good luck charm (Dlamini, 1981).</td>
</tr>
</tbody>
</table>
35. **Euclea natalensis** A.DC.

36. **Ficus natalensis** Hochst. ex Burret

37. **Gardenia cornuta** L.

38. **Gardenia monogyna** Vahl

39. **Grewia caffra** Bullock

40. **Grewia microthyrsa** K.Schum.

41. **Hibiscus cannabinus** L.

42. **Hibiscus mutabilis** L.

43. **Kigelia africana** (Lam.) B.Batla

44. **Lagynias lasiantha** (Benth.) R.R. Koopman

45. **Lagynias splendida** (Buch.-Ham. ex Burret) Coates Palgrave

46. **Lagynias spicata** (Hochst. ex K.Koch) K.Schum.

47. **Lagynias tenuiflora** (Kunze) R.R. Koopman

48. **Lagynias warburgii** (Sond.) R.R. Koopman

49. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

50. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

51. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

52. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

53. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

54. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

55. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

56. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

57. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

58. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

59. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

60. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

61. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

62. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

63. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

64. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

65. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

66. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

67. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

68. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

69. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

70. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

71. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

72. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

73. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

74. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

75. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

76. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

77. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

78. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

79. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

80. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

81. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

82. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

83. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

84. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

85. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

86. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

87. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

88. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

89. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

90. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

91. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

92. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

93. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

94. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

95. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

96. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

97. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

98. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

99. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

100. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

101. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

102. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

103. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman

104. **Lagynias warburgii** var. **warburgii** (Sond.) R.R. Koopman
Table 1 (continued)

<table>
<thead>
<tr>
<th>Species name; family name; vernacular name(s); voucher specimens [BMC] and photographs [DSC]</th>
<th>Known Zulu (and Swazi) uses (cited directly from source)</th>
<th>Anecdote or use(s) recorded in Kwanibela</th>
<th>Known Zulu (and Swazi) uses (cited directly from source)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45. Llundotloa kirkii Dyer (Apocynaceae); umBungwa; [BMC207]; [DSC37]</td>
<td>umBungwa; umBungwa</td>
<td>SF: The fruit is eaten. If all teeth in the mouth are paining, it is believed to be a sign of an evil spirit. The root is infused in water and the water is gargled to relieve pain. a</td>
<td>Roots used for abdominal pain (Gelfand et al., 1985) and as an aphrodisiac (Haerd, 1964). No similar Zulu uses could be found in the literature.</td>
</tr>
<tr>
<td></td>
<td>SF: The fruit is eaten. If all teeth in the mouth are paining, it is believed to be a sign of an evil spirit. The root is infused in water and the water is gargled to relieve pain. a</td>
<td>Roots used for abdominal pain (Gelfand et al., 1985) and as an aphrodisiac (Haerd, 1964). No similar Zulu uses could be found in the literature.</td>
<td></td>
</tr>
<tr>
<td>46. Lippia javanica (Burm.f.) Spreng. (Verbenaceae); umSozwane; [BMC101]; [DSC59]</td>
<td>inSwazwe; umSwazi, Luhlanga (S); Umsutane (S)</td>
<td>SF: The leaves are boiled in water and the whole body is covered over the steam to cure fever. TN/SM: The leaves are burned in the fire and the smoke is used to repel mosquitoes. b</td>
<td>Roots used for medicinal and magical purposes and has toxic characteristics (Cunningham, 1988; Cunningham and Zondi, 1991; Liengme, 1981). The leaves are used for colds and coughs, to treat febrile rashes and, sometimes, as protection from dogs and crocodiles (Dolke and Vilikazi, 1972). Leaves are used in washes and in poultices for chest ailments (Roberts, 1990), taken as poultices to warm up lower limbs (Hutchings et al., 1996), for gangrenous rectitis (Bryant, 1966) and as an infusion for diarrhea (De Wet et al., 2010).</td>
</tr>
<tr>
<td></td>
<td>SF: The leaves are boiled in water and the whole body is covered over the steam to cure fever. TN/SM: The leaves are burned in the fire and the smoke is used to repel mosquitoes. b</td>
<td>Roots used for medicinal and magical purposes and has toxic characteristics (Cunningham, 1988; Cunningham and Zondi, 1991; Liengme, 1981). The leaves are used for colds and coughs, to treat febrile rashes and, sometimes, as protection from dogs and crocodiles (Dolke and Vilikazi, 1972). Leaves are used in washes and in poultices for chest ailments (Roberts, 1990), taken as poultices to warm up lower limbs (Hutchings et al., 1996), for gangrenous rectitis (Bryant, 1966) and as an infusion for diarrhea (De Wet et al., 2010).</td>
<td></td>
</tr>
<tr>
<td>47. Oseora paniculosa (Sond.) R. & A. Fern. (Anacardiaceae); isiFico; [BMC66]</td>
<td>isFico, isiFica, isidikwe</td>
<td>SF: The leaves are mixed with inGanga, boiled and the head is covered over the steam, which is inhaled to avoid bad dreams. b TN/SM: The bark and roots are infused in water and taken as a health tonic. b</td>
<td>Roots used for medicinal and magical purposes and has toxic characteristics (Cunningham, 1988; Cunningham and Zondi, 1991; Liengme, 1981). The leaves are used for colds and coughs, to treat febrile rashes and, sometimes, as protection from dogs and crocodiles (Dolke and Vilikazi, 1972). Leaves are used in washes and in poultices for chest ailments (Roberts, 1990), taken as poultices to warm up lower limbs (Hutchings et al., 1996), for gangrenous rectitis (Bryant, 1966) and as an infusion for diarrhea (De Wet et al., 2010).</td>
</tr>
<tr>
<td>48. Pappea capensis Eckl. & Zeyh. (Sapindaceae); umQokolo; [BMC74]; [DSC68]</td>
<td>umGqogo, umOxhoga, umQokwane, indaba, iThe; uFuma-embovu, uFuma</td>
<td>SF: Only birds eat the fruit. No other function is known.</td>
<td>Used for medicinal and magical purposes and has toxic characteristics (Hutchings et al., 1996; Pooley, 1993). The bark and roots are used as traditional medicine (Cunningham, 1988), and plant parts are used medicinally for calves (Gerstner, 1939). No similar Zulu uses could be found in the literature.</td>
</tr>
<tr>
<td>49. Portulacaria afra Jacq. (Portulaceae); isiZoqui</td>
<td>isiZoqui; isibambane; isiCococo; inDihili-ekhulu, isiDihili; isiDondwane; inTelesi</td>
<td>SF: For grazing.</td>
<td>No similar Zulu uses could be found in the literature.</td>
</tr>
<tr>
<td>50. Pouteratia verrucosa (E. Mey. ex Sond.) Szyzyl. (Celastraceae); umHlabankonkoni; [BMC52]; [DSC72]</td>
<td>umHlabankonkoni; uHlimzanyoka</td>
<td>SF: When the sangoma goes to the sea, he/she takes a buffalo tail and cleans the tail with the root. Sangoma is, then, taken into the sea by a snake which gives him/her strength and powers. b</td>
<td>No similar Zulu uses could be found in the literature.</td>
</tr>
<tr>
<td>51. Rhicissus digitata (L.f.) Gilg & M.Brandt (Vitaceae); isiNzazi; [BMC109]; [DSC73]</td>
<td>isiNzazi; umNangwazi, umPhambane, iThangalezhi; umThwazi</td>
<td>GM: The root is boiled and mixed with other plants if someone wants a baby (to enhance fertility). a</td>
<td>Used for medicinal purposes and has toxic characteristics (Cunningham and Zondi, 1991; Hutchings et al., 1996). The roots are used as traditional medicine (Cunningham, 1988). The common Zulu names suggest that they are probably used during pregnancy to facilitate delivery and for cattle diseases in the same way as R. tomentosa. Roots are used as a stomachic (Liengme, 1981).</td>
</tr>
<tr>
<td>52. Rhicissus tomentosa (Lam.) Wild & R.B.Drumm. (Vitaceae); isiNzazi; [DSC74]</td>
<td>isiNzazi, umPhambane</td>
<td>GM: The root is boiled and mixed with other plants if someone wants a baby (to enhance fertility). a</td>
<td>Used for medicinal purposes and has toxic characteristics (Dlamini, 1981; Hutchings et al., 1996). Milk dections of the roots are administered as anthelmitics to calves (Watt and Breyer-Brandwijk, 1962). They may also be used in the same way as R. tridentata to facilitate delivery.</td>
</tr>
</tbody>
</table>
SF: The root is boiled in water and the water is gargled to treat toothache.

53. Syzygium clausum (A.Rich.) Fries. (Myrtaceae); umKholokotho; [DSC77].

SF: Used for medicinal and magical purposes (Cunningham, 1988; Hutchinson, 1968). The bark is used for preparing a poultice to apply to affected areas and to give to children drinking milk if it is supposed to have a bad mother. No similar Zulu uses could be found in the literature.

54. Scadoxus puniceus (A.Rich.) A.DC. (Apocynaceae); umZala; [DSC78]; [BMC177]; [DSC62].

SF: Known as "red milkwood" in KwaZulu-Natal. The root is placed in the anus (suppository) to cure the flu.

55. Sideroxylon inerme (L.) D.Cav. (Sapotaceae); umGxamu; [BMC08]; [DSC75].

SF: Used for medicinal purposes (Pooley, 1993). Root bark is administered as an enema to produce drastic perspiration (Jansen, 1931). The root is applied to the face for blood clearing, and as a blood-cleaning emetic before marriage (Cunningham, 1988; Walker, 1996). The root bark is used to make red dye for the ikhukhulo’s cloaks. No similar Zulu uses could be found in the literature.

56. Solanum elaeagnifolium (A.Cunn.) Cav. (Solanaceae); umGanu, [DSC80]; [BMC102]; [DSC81].

SF: Known as "red spot" in umGxamu. The root is used to treat bloody stool in Swaziland (Gerstner, 1938; Pujol, 1990). Fruit is used for enteritis and diarrhea (Hulme, 1954). Plants parts are taken to dispel bad dreams (Watt and Breyer-Brandwijk, 1962). Bark is used to make red dye for the ikhukhulo’s cloaks. No similar Zulu uses could be found in the literature.
<table>
<thead>
<tr>
<th>Species name; family name; vernacular name(s); voucher specimens [BMC] and photographs [DSC]</th>
<th>Known Zulu name(s) [where applicable, Swazi name(s) are indicated by (S)] (Raymond, 2005 = R, Hutchings et al., 1996 = H, Adeniji et al., 1998 = A; Dlamini, 1981 = D)</th>
<th>Anecdote or use(s) recorded in Kwanibela</th>
<th>Known Zulu (and Swazi) uses (cited directly from source)</th>
</tr>
</thead>
<tbody>
<tr>
<td>62. Spirostachys africana</td>
<td>Spirostachys africana SF: An infusion is prepared from the bark and used for wound healing. The timber is used for building. TN/SM: Bait is dipped in the tree sap and used to poison animals when hunting.</td>
<td>SF: The root is put in the garden to fight thunderstorms created by the songo.</td>
<td>Used for medicinal and magical purposes and has toxic characteristics (Cunningham, 1988; Cunningham and Zondi, 1991; Dlamini, 1981; Pooley, 1993). The bark is used for stomach ulcers and acute gastritis (Fujol, 1990). Roots and bark are used in small quantities for stomach ulcers and eye washes (Palmer and Pitman, 1972b). Steam is believed to cure eye complaints. Slightly burnt wood is put in the nose to cure headaches and dry bark is used in embrocations for rashes in babies. The sap is applied to boils and used on cattle sores to kill maggots (Hutchings et al., 1996). No similar Zulu uses could be found in the literature. Roots are used to treat infertility in Swaziland (Adeniji et al., 1998).</td>
</tr>
<tr>
<td>63. Strychnos decussata</td>
<td>Strychnos decussata SF: The root is eaten.</td>
<td>SF: The fruit is eaten.</td>
<td></td>
</tr>
<tr>
<td>64. Strychnos henningsii</td>
<td>Strychnos henningsii SF: The fruit is eaten.</td>
<td>SF: The root is put in the garden to fight thunderstorms created by the songo.</td>
<td></td>
</tr>
<tr>
<td>65. Strychnos madagascariensis</td>
<td>Strychnos madagascariensis SF: The fruit is eaten.</td>
<td>SF: The root is put in the garden to fight thunderstorms created by the songo.</td>
<td></td>
</tr>
<tr>
<td>66. Strychnos spinosa Lam.</td>
<td>Strychnos spinosa Lam. SF: The fruit is eaten.</td>
<td>SF: The root is put in the garden to fight thunderstorms created by the songo.</td>
<td></td>
</tr>
<tr>
<td>67. Syzygium cordatum</td>
<td>Syzygium cordatum SF: The fruit is eaten.</td>
<td>SF: The root is put in the garden to fight thunderstorms created by the songo.</td>
<td></td>
</tr>
<tr>
<td>68. Tabernaemontana elegans</td>
<td>Tabernaemontana elegans SF: The fruit is eaten.</td>
<td>SF: The root is put in the garden to fight thunderstorms created by the songo.</td>
<td></td>
</tr>
</tbody>
</table>
69. *Teckea natalensis* (Sond.) Engl. (Rutaceae); umOzane; [BMC146]; [DSC93]

SF: The fruit is given to baby like a sweet to kill worms in the baby’s teeth.b

GM: The fruit is eaten by birds. The flower can be sucked for the “sweet water” (nectar).b

GM: The timber is used for building.

GM/TN/SM: The fruit added to water and left in the sun to ferment. It makes the water milky and is used to make medicine for the “small boy” (stokoloshe) from the body.

70. *Tecoma capensis* (Thunb.) Hutchings et al., 1996

uChacha; umOzane; [BMC146]; [DSC93]

SF: The fruit is given to baby like a sweet to kill worms in the baby’s teeth.b

GM: The timber is used for building.

GM/TN/SM: The fruit added to water and left in the sun to ferment. It makes the water milky and is used to make medicine for the “small boy” (stokoloshe) from the body.

71. *Toddalopis bremekapiti* L. Verdo. (Rutaceae); umTane

umOzane; [BMC146]; [DSC93]

SF: The fruit is given to baby like a sweet to kill worms in the baby’s teeth.b

GM: The fruit is eaten by birds. The flower can be sucked for the “sweet water” (nectar).b

GM: The timber is used for building.

GM/TN/SM: The fruit added to water and left in the sun to ferment. It makes the water milky and is used to make medicine for the “small boy” (stokoloshe) from the body.

72. *Trichiola emetica* Vahl (Meliaeaeae); umKhuhi; [BMC203]

SF: The fruit is given to baby like a sweet to kill worms in the baby’s teeth.b

GM: The fruit is eaten by birds. The flower can be sucked for the “sweet water” (nectar).b

GM: The timber is used for building.

GM/TN/SM: The fruit added to water and left in the sun to ferment. It makes the water milky and is used to make medicine for the “small boy” (stokoloshe) from the body.

73. *Uvaria caffra* E.Mey. ex Sond. (Annonaceae); umMalumumula; [DSC98]

74. *Uvaria lucida* Benth. subsp. virens (N.E.Br.) Verde. (Annonaceae); umMalumumula; [BMC18]; [DSC97]

SF: The roots are used as good luck charm.b

GM: Do not use as a whip to herd cows.

GM: The roots are used as good luck charm.b

GM: Do not use as a whip to herd cows.

75. *Vangueria infausta* A.DC. (Rubiaceae); umVivo; [BMC72]; [DSC99]

SF: The leaves are used to make amasi.b

GM: The leaves are put under chickens’ eggs to prevent them from rotting.b

GM: The leaves are used to make amasi.b

GM: The leaves are put under chickens’ eggs to prevent them from rotting.b

GM: The leaves are used to make amasi.b

GM: The leaves are put under chickens’ eggs to prevent them from rotting.b

GM: The leaves are used to make amasi.b

76. *Warburgia salutaris* (G.Bertol.) Chiov. (Canellaceae); isiBaha; [BMC187]

SF: The leaves are added to food as a spice to give a peppery taste.b

GM: The leaves are added to food as a spice to give a peppery taste.b

GM: The leaves are added to food as a spice to give a peppery taste.b

GM: The leaves are added to food as a spice to give a peppery taste.b

GM: The leaves are added to food as a spice to give a peppery taste.b

GM: The leaves are added to food as a spice to give a peppery taste.b

GM: The leaves are added to food as a spice to give a peppery taste.b
Table 1 (continued)

<table>
<thead>
<tr>
<th>Species name; family name; vernacular name(s); voucher specimens [BMC] and photographs [DSC]</th>
<th>Known Zulu name(s) [where applicable, Swazi name(s) are indicated by (S)]</th>
<th>Anecdote or use(s) recorded in Kwambela</th>
<th>Known Zulu (and Swazi) uses (cited directly from source)</th>
</tr>
</thead>
<tbody>
<tr>
<td>77. Ximenia caffra Sond. (Olacaceae); umThunduluka; [BMC209]</td>
<td>umThunduluka RH; umGwenya RH; uMalala R; uManambhelo R; uMatimokholo R; umThunduluka-ombomvu R; Umfunduluka (S)</td>
<td>GM: The fruit is eaten.</td>
<td>Used for medicinal and magical purposes and has toxic characteristics (Hutchings et al., 1996; Pooley, 1993). The leaves are used for inflamed eyes (Watt and Breyer-Brandwijk, 1962), and the roots are used as traditional medicine (Cunningham, 1988). The whole plant is used to treat weight loss in Swaziland (Adeniji et al., 1998).</td>
</tr>
<tr>
<td>78. Zanthoxylum capense (Thunb.) Harv. (Rutaceae); amaBele; [BMC153]; [DSC100]</td>
<td>amaBelezinshingezi RH; umLangumambele RH; uNlangoshi R; umNungamambele R; umNungwane-omncane RH; Umnungu mabele (S)</td>
<td>SF: An infusion of the root is taken to treat toothache. To heal “iBande”, the root is mixed with hook thorn, burned to coals, ground and inserted into an incision on the skin. T: The fruit is eaten.</td>
<td>Used for medicinal purposes (Cunningham, 1988; Cunningham and Zondi, 1991; Hutchings et al., 1996; Liengme, 1981; Pooley, 1993; Walker, 1996). The leaves are used to heal sores (Bryant, 1966) and used as an ingredient in purgative parasiticides and stomach complaints. Roots are used as an ingredient for pleurisy sufferers, infertility and impotency. Root bark is used as an ingredient for chronic coughs and for snakebite. Root bark is applied for toothache and bark is used to treat paralysed limbs by being rubbed into incisions and patient sucks boiling bark decoction from finger tips and then taps affected joints. No similar Zulu uses could be found in the literature. Rootbark is used to treat toothache in Swaziland (Adeniji et al., 1998).</td>
</tr>
<tr>
<td>79. Ziziphus mucronata Willd. (Rhamnaceae); umHlalankosi; [BMC162]; [DSC101]</td>
<td>umHlahlankosi RH; umLahlankosi R; umPhafa RH; umBhufa R; umHlabantu R</td>
<td>GM/TN: A twig of the plant is taken on the journey to fetch the spirit of a deceased person. SF: The leaf is put on a wound to pull out a thorn. T: The fruit is eaten.</td>
<td>Used for medicinal and magical purposes and has toxic characteristics (Hutchings et al., 1996; Pooley, 1993). The bark is used as emetics for chronic coughs (Bryant, 1966). Leaves and bark are used for respiratory ailments (Watt and Breyer-Brandwijk, 1962) and steam baths from the bark are used to purify the complexion (Palmer and Pitman, 1972b). Roots are used for toothache and scrofula and leaves are used for boils and glandular swellings (Doke and Vilikazi, 1972; Palmer and Pitman, 1972b). The branches are used to attract ancestral spirits from an old dwelling site to a new one and are placed on the graves of chiefs and heads of kraals after burial and fed to cattle the same evening so the cattle will imbibe the spirit of the dead owner.</td>
</tr>
<tr>
<td>80. Unidentified species; umThandelo</td>
<td>SF: When two wives are fighting, it is used to create peace in the household.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81. Unidentified species; amaHlozi (Cretis species?)</td>
<td>TN/SM: The leaves are dried and powdered for use as snuff.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82. Unidentified species; umTumbula</td>
<td>TN/SM: The root is boiled and eaten like potato.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
purgatives and a few of them required that a mixture of plant species be used.

4. Conclusions

The new medicinal plant uses and vernacular names are valuable contributions to the Zulu ethnobotanical record. The confirmation of some of the known uses and the elaboration of uses of well-documented species are also of value in providing a more complete insight into the patterns of plant use in KwaNilibela and in KwaZulu-Natal as a whole. No link between Swazi traditional uses or vernacular names and those of KwaNilibela could be established to corroborate the verbal accounts of the KwaNilibela people having migrated from Swaziland.

The new species records and new uses of both well-documented and poorly recorded species revealed in this study indicate that the ethnobotanical knowledge of the Zulu ethnic group in Maputaland is incompletely recorded. It is imperative that traditional knowledge systems from relatively isolated populations within South Africa are documented in an attempt to preserve indigenous plant knowledge before it is lost to a changing world.

Acknowledgments

The first author acknowledges, with gratitude, the assistance, knowledge and time shared with the community of KwaNilibela, particularly Goodenough Mdulli, Stembiso Mdulli, Themba Nxumalo, Sibusiso Falakhe, Mr Gumede and the induna Lazarus Mdulli. Thanks are also due to Michiel Jonker for invaluable assistance with field trips.

References

Dlamini, B., 1981. Swaziland flora: their local names and uses. Ministry of Agriculture and Cooperatives, Forestry Section, Mbabane, Swaziland.

