A reappraisal of the generic status of Liparia and Priestleya (Fabaceae)

Anne Lise Schutte & Ben-Erik Van Wyk

Summary

The generic delimitation of Liparia L. and Priestleya DC. (Fabaceae, tribe Liparieae) is reevaluated. Traditionally the shape and size of the carinal lobe of the calyx, the shape of the keel petals and the number of flowers per inflorescence were used as diagnostic characters. A study of morphological and alkaloid variation indicates that the two genera run much into one another. Differences in inflorescence and floral structure can be attributed to adaptations to different pollination strategies. The unique combination of major alkaloids occurring in both genera also suggests that they are congeneric. Priestleya is therefore placed into synonymy under Liparia. The nomenclature, synonymy and typification of the genus and the 14 species recognized are presented, and some necessary new combinations are made.

Introduction

Liparia L. and Priestleya DC. form part of the papilionaceous tribe Liparieae, restricted to the Cape Province of southern Africa and distinguished from the closely related tribe Podalyrieae by the fusion of the stamens, either into an open sheath or a closed tube (in the Podalyrieae the stamens are more or less free to the base). Affinities between the genera of these two tribes are currently under investigation and will be published elsewhere (Van Wyk & Schutte, in prep.).

Liparia, as presently circumscribed (Bos, 1967), comprises two species (one with two subspecies). Schutte & Van Wyk (1993) recently found Priestleya to be paraphyletic. Priestleya sect. Aneisothea DC. was separated and accorded generic status under the reinstated name Xiphotheca Eckl. & Zeyh. Nine species are included within Xiphotheca. After the reduction only 12 species remained in Priestleya.

The similarities between members of Liparia and Priestleya have previously been noted by various authors (Bentham, 1843; Harvey, 1862; Van Wyk & al., 1991a, 1991b; Oliver & al., 1992; Schutte & Van Wyk, 1993). In the past, the enlarged and petaloid lower lobe of the calyx, the narrow keel with a forwardly directed beak and the congested, many-flowered inflorescence were used as diagnostic characters for Liparia (Polhill, 1976, 1981). In Priestleya the lower calyx lobe is only slightly enlarged, the keel is broader and has an upwardly directed beak, and the flowers are usually arranged in extended racemes or congested few-flowered inflorescences. However, the recent discovery of a new species, P. boucheri (Oliver & al., 1992), as well as results gained from comparative studies show that the distinction between these two genera must be reappraised. Morphological and alkaloid variation in Liparia and Priestleya was therefore investigated. The results are presented, illustrated (Fig. 1-3) and discussed below.

1Department of Botany, Rand Afrikaans University, P.O. Box 524, Aucklandpark 2006, Johannesburg, Republic of South Africa.
Results

Liparia and *Priestleya* are remarkably similar in the shapes, sizes and venation patterns of the leaves (Fig. 1). In fact, they alone within the tribe have totally sessile leaves. Their leaf venation also deviates by the presence of three or more primary veins arising from the base of the lamina, whereas in other genera the leaves are pinnately veined.

Liparia and *Priestleya* have simple racemose inflorescences, situated in the axils of the terminal leaves, with variation in the number of flowers, the length of the peduncle and the length of the inflorescence axis. The flowers are borne on lateral short shoots, terminating in a small apical extension of the inflorescence axis (Fig. 2).

P. hirsuta has an extended raceme of 6 to 12 flowers, often basally subtended by sterile bracts. Modification of this basic inflorescence type seems to occur in two different directions, as illustrated in Fig. 2. On the one hand the flower number increases, the inflorescence axis shortens, and the sterile bracts become enlarged and petaloid, creating a nodding, head-like inflorescence unit as in *L. parva* and *L. splendens*. On the other hand, a reduction in flower number and a decrease in the

![Figure 1](https://via.placeholder.com/150)

length of the axis eventually lead to decussate 4-flowered inflorescences as in _P. capitata_ and related species, or paired flowers as in _P. boucheri_. In this line of specialization, the inflorescences are erect and usually lack sterile bracts.

The flowers generally have a firm texture, but there are some distinct differences in flower colour and structure (Fig. 3). In all except one species of _Priestleya_, the flowers are bright yellow and the keel petals broad with an upwardly directed beak. _P. boucheri_ and _Liparia parva_, however, have lemon yellow flowers. In these two species the keel petals are narrow with the apex forwardly directed. The keel petals are similar in shape in _L. splendens_, but the flowers are much larger and bright orange to reddish in colour. Furthermore, the wing petals are structurally modified to interlock dorsally and completely enclose the keel. In both _Liparia_ species the lower lobe of the calyx is much larger than the upper four lobes. All species of _Priestleya_, including _P. boucheri_, have the lowermost calyx lobe only slightly longer than the others.

Studies on the distribution of major alkaloids in _Liparia_ and _Priestleya_ have provided some exciting results (Van Wyk & al., 1991a, 1991b). In _Priestleya_, tetracyclic quinolizidine alkaloids such as sparteine, isosparteine, 11,12-dehydrosparteine, isolupanine, lupanine and 13-hydroxylupanine occur as major components, as well as

Fig. 2. Schematic representation of variation in inflorescence structure in _Liparia_ and _Priestleya_. A, erect many-flowered raceme, often subtended by sterile bracts, e.g. _P. hirsuta_; B, nodding, head-like congested few-flowered raceme, subtended by sterile bracts, e.g. _L. parva_; C, nodding, head-like many-flowered congested raceme, subtended by sterile bracts, e.g. _L. splendens_; D, erect, few-flowered raceme, e.g. _P. angustifolia_; E, erect, decussate 4-flowered inflorescence with a peduncle, e.g. _P. myrtifolia_; F, erect, decussate 4-flowered inflorescence without a peduncle, e.g. _P. vestita_; G, erect, 2-flowered inflorescences without a peduncle, e.g. _P. boucheri_; H, terminal part of inflorescence showing axis extension.
small quantities of ammodendrine, a piperidyl alkaloid. Exactly the same combination and proportions of alkaloids were detected in *L. parva*. *L. splendens*, however, differed in the presence of a large amount of ammodendrine and only small quantities of the other compounds. As with morphological data, the major discontinuity does not conform with current generic delimitation.

Discussion

From the above evidence it is clear that, taken together, *Liparia* and *Priestleya* are monophyletic. They share at least five unambiguous synapomorphies, namely: (1) the totally sessile leaves; (2) the peculiar venation pattern of the leaves (3- or more-veined from the leaf base); (3) the presence of a terminal extension of the inflorescence axis; (4) the occurrence of sterile bracts at the base of inflorescences; and (5) the unique combination of alkaloids. None of these characters occur in any of the other genera in the tribe *Liparieae*.

Variation that does occur in inflorescence and flower structure may result from adaptation to different pollinators. As far as can be ascertained, most *Priestleya* species are pollinated by xylocopid bees. According to Scott-Elliot (1890), *Liparia parva* is visited by bees, but the almost proteoid structure of the inflorescence, yeast-like odour of the flowers, pale colour of the corolla and the fact that the inflorescences are borne at ground level suggest possible pollination by small mammals (pers. obs.). This is known to occur in some species of the genus *Protea* L. (*Proteaceae*) where the inflorescences show analogous characteristics (Wiens & al., 1983; Rebelo & Breytenbach, 1987). If the similarity in floral structure between

Fig. 3. Flowers in lateral view, showing variation in size and structure, in *Liparia* and *Priestleya*. A, *L. splendens*; B, *P. boucheri*; C, *L. parva*; D, *P. hirsuta*; E, *P. umbellifera*; F, *P. angustifolia*. – Scale 5 mm.
Priestleya boucheri and L. parva is considered, the same pollination strategy could also be present in the former. A study of the pollination agents of these species promises to yield some fascinating results, since pollination by non-flying mammals is not known to occur in the legume family (Arroyo, 1981). L. splendens is a putative sunbird-pollinated species (Bos, 1967; Rebelo, 1987) and exhibits a number of corresponding morphological adaptations, such as the pendent, compact proteaceous inflorescence, orange-red flowers, large standard petal, interlocked wing petals, and enlarged petaloid carinal lobe of the calyx. It seems as if this might be an example of mimicry between Proteaceae and Fabaceae occurring in the fynbos.

According to Whitehead & al. (1987) pollination syndromes are not clear-cut categories, but overlap to a great extent to form part of a continuum of pollinator attraction strategies. Arroyo (1981) claims that bird pollinated legumes belonging to the subfamily Papilionoideae evolved from Xylocopa-pollinated species. In the past many monotypic or small genera were established on the basis of unusual floral characteristics associated with ornithophilous pollination. In the Cape fynbos region of southern Africa, this is a common phenomenon in the family Iridaceae (Goldblatt & De Vos, 1989; Goldblatt, 1990, 1992), which has subsequently led to the reduction of the ornithophilous “genera” into synonymy.

Judged by the given data, the distinction between Liparia and Priestleya is based solely on characters associated with pollination. The two are undoubtedly congeneric, and their amalgamation will result in a more natural classification and give a better reflection of major lineages within the tribe. We therefore propose the placing of Priestleya into synonymy under Liparia.

Nomenclature

Woody shrubs or subshrubs. Leaves alternate, simple, often becoming black when dry; lamina linear to elliptic to almost round, flat or concave, with 3 or more veins arising from sessile base; petioles absent; stipules usually present, small, persistent. Inflorescences simple, axillary brachyblasts ending in a terminal rachis extension, erect or nodding; flowers in extended racemes or aggregated by 2 or 4, or congested in many-flowered heads. Bracts broad, sheathing, sometimes foliaceous or petaloid, often sterile. Bracteoles absent. Calyx intrusive; upper two lobes fused higher up than lower three lobes; carinal lobe longer than the upper four, sometimes enlarged and petaloid. Corolla firmly textured, bright yellow, pale lemon-yellow, or orange to reddish orange. Standard elliptic-oblong to obovate to subcircular, with calli at base of lamina; margins sometimes reflexed. Wing petals oblong to narrowly oblong,
sometimes folded round the keel with interlocking lobes. *Keel petals* broad with an upwardly directed beak or narrow with a forwardly directed beak. *Stamens* diadelphous, united for ± half their length, vexillary filament free; anthers strongly dimorphic, alternately dorsifixed and subbasifixed. *Pistil* sessile; ovary densely sericeous to tomentose; style curved upwards, slender, glabrous. *Pods* coriaceous, obliquely ovate to oblong, beaked, 3- to several-seeded. *Seeds* oblong-reniform; hilum elliptic, surrounded by a collar-like aril. *Chromosome number* 2n = 18.

Endemic to the Cape fynbos region of South Africa, ranging from the Clanwilliam region in the north-western Cape southwards to the Cape Peninsula and eastwards to Uitenhage near Port Elizabeth.

Fourteen species can be distinguished. These are enumerated below. A detailed taxonomic account of the genus *Liparia*, including an identification key and full descriptions of the species, will be published elsewhere.

= Priestleya hirsuta var. trinervia Meisn. in London J. Bot. 2: 64. 1843. – Lectotype (designated here): South Africa, Cape Province, “Ataquaskloof”, Drège s.n. (P!).

= Priestleya hirsuta var. subenervia Meisn. in London J. Bot. 2: 64. 1843. – Lectotype (designated here): South Africa, Cape Province, “In collibus prope Knysna Rivier, distr. George, Jan. 1839”, Krauss 914. [No type specimen has yet been found, but from the description and locality this variety is doubtfully distinct.]

8. Liparia laevigata (L.) Thunb., Prodr. Pl. Cap.: 123. 1800 = Borbonia laevigata L., Mant. Pl.: 100. 1767 = L. umbellata L., Mant. Pl.: 269, 516. 1771, nom illeg. = Priestleya laevigata (L.) DC., Prodr. 2: 121. 1825 (quad basion.) = P. thunbergii Benth. in London J. Bot. 2: 446. 1843, nom illeg. – Lectotype (designated here): South Africa, Cape Province, “ad Cap. B. Spei”, anon. 31, Herb. Linnaeus No. 890.4 (LINN!). [“Priestleya laevigata” sensu DC., i.e. the specimen in G-DC from which the plate in Candolle (1825-1827: t. 30) was drawn, is

11. | **Liparia parva** Vogel ex Walp. in Linnaea 13: 468. 1839. – Neotype (designated by Bos, 1967): South Africa, Cape Province, Cape Peninsula, south western slopes of Klaasjagersberg, **Sidey 2142** (S!; isotype: PRE!).

12. | **Liparia splendens** (Burm. f.) Bos & de Wit in J. S. African Bot. 33: 276. 1967 ≡ **Leucadendron splendens** Burm. f., Prodr. Fl. Cap.: 4. 1768. – Lectotype (designated here): s. loc., s. **coll.** (G!). [Bos (1967) designated a neotype, since no original material could then be found. However, during a visit to Geneva in 1991, we traced a specimen named “Leucad. splendens” by Burman himself.]

12a. | **Liparia splendens** subsp. **splendens**

L. umbellifera; Bentham (1843) followed Candolle’s (1825) misapplication of the name and consequently renamed – illegitimately – the genuine *Borbonia laevigata.*
= **Liparia burchellii** Benth. in London J. Bot. 2: 443. 1843. – Holotype: South Africa, Cape Province, “Cape Colony”, *Burchell 6881* (K!; isotypes: P!, W!).

= **Liparia parva** var. *angustifolia* Benth. ex Hook. f. in Curtis’s Bot. Mag.: ad t. 4034. 1843. – Holotype: s. loc., *s. coll.* (K!). [The specimen has been annotated by Bentham himself.]

= “**Priestleya laevigata**” auct.: Candolle, Prodr. 2: 121. 1825, Candolle, Mém. Légum.: 195. 1826; Don, Gen. Syst. 2: 132. 1832. [See note under *Liparia laevigata*.]

Acknowledgements

We are indebted to the directors and staff of the mentioned herbaria for loans of specimens and especially the European herbaria for allowing us to study their collections during visits in 1990, 1991 and 1992. Financial support from the Foundation for Research Development is gratefully acknowledged.

Literature cited

